

Appendix 16

Contaminated Land Effects Assessment

Eastern Busway EB3 Commercial and EB4 Link Road

Contaminated Land Effects Assessment Document Number: EB-RP-3C4L-PL-000007

Quality Information

Document Number: EB-RP-3C4L-PL-000007

Document History and Status				
Rev	Rev Date Author Status			
А	19.07.2023	Harry Jones	Final	

	Document Approval				
Rev	Action	Name	Position	Date	Signature
А	Reviewed by	Emilie Eddington	SQEP	17.04.2023	On file
В	Reviewed by	Roger McDonald	Alliance Principal Planner	25.07.2023	On file
1	Approved by	Jarrod Snowsill	Alliance RMA Planning Lead	31.08.2023	On file

Table of Contents

List of A	ist of Abbreviations and Definitions6		
Executiv	ve Summary	. 7	
1	Introduction	. 9	
1.1	Overview of the Eastern Busway Project	.9	
1.2	Project Objectives	10	
2	Proposal Description	11	
2.1	Eastern Busway 3 Commercial	11	
2.2	Eastern Busway 4 Link Road	12	
3	Specialist Assessment	14	
3.1	Assessment Content	14	
3.2	Specific Project Elements	12	
3.2.1	EB3C Package	12	
3.2.2	EB4L Package	12	
3.3	Regulatory Framework	16	
3.3.1	NES-CS	16	
3.3.2	Auckland Unitary Plan – Chapter E30 Contaminated Land	17	
4	Methodology	18	
4.1	Site Walkovers	18	
4.2	Desktop Study	18	
4.2.1	Previous Environmental Investigations	18	
4.2.2	Aerial Photographs	18	
4.2.3	AC Contamination Enquiry	18	
4.3	Preliminary Sampling Activities	19	
4.3.1	Soil Sampling	19	
4.3.2	Groundwater Sampling		
4.3.3	Applicable Guidelines for Comparison	19	
5	Results – EB3C	21	
5.1	Site Walkover - EB3C		
5.2	No new HAIL sites were identified. Desktop Study – EB3C	21	
5.2.1	Previous Environmental Investigations	21	
5.2.2	Aerial Photographs		
5.2.3	Auckland Council Contamination Enquiry	26	
5.3	Soil and Groundwater Sampling – EB3C	26	
5.3.1	Soil sampling		
5.3.2	Groundwater Samples	27	
6	Consent Requirements – EB3C		
6.1	242 and 386 Tī Rākau Drive	30	
6.1.1	NES- CS		
6.1.2	Auckland Unitary Plan	30	

7	Results – EB4L	32
7.1	Site Walkover – EB4L	32
7.2	Desktop Study – EB4L	32
7.2.1	Previous Environmental Investigations	32
7.2.2	Aerial Photographs	33
7.2.3	Auckland Council Contamination Enquiry	34
7.3	Soil and Groundwater Sampling – EB4L	34
8	Consent Requirements – EB4L	35
8.1	550 Te Irirangi Drive	36
8.1.1	NES-CS	36
8.1.2	Auckland Unitary Plan	37
8.2	451 Tī Rākau Drive	37
8.2.1	NES-CS	37
9	Contaminated Land Effects – EB3C and EB4L	38
9 10	Contaminated Land Effects – EB3C and EB4L	
-		39
10	Mitigation	39 39
10 10.1	Mitigation Residential Properties	39 39 39
10 10.1 10.2	Mitigation Residential Properties Unexpected Discoveries	39 39 39 39
10 10.1 10.2 10.3	Mitigation Residential Properties Unexpected Discoveries Contaminated Land Management Plan (CLMP)	39 39 39 39 41
 10 10.1 10.2 10.3 11 12 	Mitigation Residential Properties Unexpected Discoveries Contaminated Land Management Plan (CLMP) Recommendations and Conclusions	 39 39 39 39 41 42
 10 10.1 10.2 10.3 11 12 Append 	Mitigation Residential Properties Unexpected Discoveries Contaminated Land Management Plan (CLMP) Recommendations and Conclusions References	 39 39 39 39 41 42 43
10 10.1 10.2 10.3 11 12 Append Append	Mitigation Residential Properties Unexpected Discoveries Contaminated Land Management Plan (CLMP) Recommendations and Conclusions References lix A: Previous Environmental Investigations	 39 39 39 41 42 43 44

Figures

Figure 1. Project alignment	. 10
Figure 2. Eastern Busway 3 Commercial and 4 Link Road Project Extent	. 11
Figure 3. Eastern Busway 3 Commercial Project Area	12
Figure 4. Eastern Busway 4 Link Road Project Area	. 13
Figure 5. Process for determining resource consent requirements under the NES-CS	. 16
Figure 6. 2018 Environmental investigation locations within the proposed EB3C	24
Figure 7. Soil sample locations along the proposed cycleway north of 380 Tī Rākau Drive	. 27
Figure 8. Location of monitoring well DH322.	28

Figure 9. HAIL sites within EB4L	. 36
Tables	
Table 1. Total cut and fill quantities for EB3C	. 15
Table 2. Volume of earthworks required for temporary and permanent EB4L works	. 15
Table 3. Summary of HAIL Sites on or directly adjacent to EB3C or within 200 m of EB3C	. 22
Table 4. Summary of sample locations from the 2018 Environmental Investigation relevant to EB3C package	. 24
Table 5. Summary of findings within EB3C.	. 30
Table 6. Summary of findings within EB4L	. 35
Table 7. Assessment of effects within EB3C and EB4L	. 38

Abbreviation and Definitions	Description
AEE	Assessment of Effects on the Environment
AUP(OP)	Auckland Unitary Plan (Operative in Part) (Updated 20 July 2023)
bgl	Below Ground Level
CEMP	Construction Environmental Management Plan
CLMP	Contaminated Land Management Plan
EB1	Eastern Busway 1 (Panmure to Pakuranga)
EB2	Eastern Busway 2 (Pakuranga Town Centre)
EB3C	Eastern Busway 3 Commercial (Pakuranga Creek to Botany)
EB3R	Eastern Busway 3 Residential (SEART to Pakuranga Creek)
EB4L	Eastern Busway 4 Link Road (link between Tī Rākau Drive and Te Irirangi Drive, Botany Town Centre)
EBA	Eastern Busway Alliance
ESCP	Erosion and Sediment Control Plan
HAIL	Hazardous Activities and Industries List
km	Kilometre(s)
m	Metre(s)
m ²	Square Metre(s)
m ³	Cubic Metre(s)
NES-CS	Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011
RTN	Rapid Transit Network
RRF	Reeves Road Flyover
RMA	Resource Management Act 1991
SEART	South-Eastern Highway
SQEP	Suitability Qualified and Experienced Practitioner
ТРН	Total Petroleum Hydrocarbon

List of Abbreviations and Definitions

Executive Summary

This report is a review and assessment of contaminated land effects associated with the construction of the Eastern Busway 3 Commercial (EB3C) and Eastern Busway 4 Link Road (EB4L) packages of the Eastern Busway Project (the Project).

Key elements of the proposed EB3C works include the construction of two bridges, noise walls and retaining walls, stormwater drainage, and a cycleway. The proposed EB3C bridge structures, new and upgraded stormwater outfalls and an area of reclamation will require works in the coastal marine area (CMA).

The proposed EB4L footprint traverses parts of Guys Reserve and Whaka Maumahara Reserve and includes road widening at the intersection of Te Irirangi and Town Centre Drive, Botany. Key elements of the proposed EB4L works include a bridge structure, retaining walls, stormwater drainage, and a new walking and cycling pathway.

This contaminated land assessment:

- Assesses whether sites within EB3C and EB4L have been subject to contaminating activities (if applicable) including the location(s) and type(s) of these activities
- Assesses the potential implications of identified sources in relation to the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES-CS)
- Provides general commentary on rules in the Auckland Unitary Plan (Operative in Part) (AUP(OP)) in relation to contamination
- Provides a general assessment of the potential effects of works within EB3C and EB4L on human health and the environment, and the potential mitigation measures to avoid, remedy or mitigate those effects (in relation to contamination effects).

Based on the information reviewed as part of this assessment, four sites were identified within EB3C and EB4L where HAIL activities may have caused contamination to be present within or adjacent to proposed works areas:

- 242 Tī Rākau Drive (service station)- EB3C
- 386 Tī Rākau Drive (service station) EB3C
- 550 Te Irirangi Drive (service station) EB4L
- 451 Tī Rākau Drive (21/451 Tyre City; 22/451 Pit Stop Botany; 24/451 VTNZ Botany) EB4L

No previous environmental investigations of potential contamination at these sites were identified for review and detailed site investigations were not completed as part of this assessment. As soil and groundwater quality are unknown, it is reasonable to assume contamination is likely to be present at the above sites.

EB3C

There are seven sites within, or within 200 m of, EB3C where HAIL activities were identified and a number of residential properties where hazardous materials like asbestos or lead based paint may be found. However, it is considered likely that contamination may only be encountered at the following two sites: 242 Tī Rākau Drive and 386 Tī Rākau Drive. These sites are located within soil disturbance areas for the proposed bus lane and/or for a pedestrian/cycleway as part of works within EB3C and

require the removal of fuel storage systems before EB3C excavation works can be undertaken. There has been limited site investigation completed to date.

The remaining HAIL sites identified within EB3C have been excluded from consent requirements due to the following:

- The sites are not located within or adjacent to any area of significant excavation
- The sites have been evaluated and contamination is unlikely to be present.

EB4L

There are two sites within 200 m of EB4L where HAIL activities were identified: 550 Te Irirangi Drive and 451 Tī Rākau Drive.

At 550 Te Irirangi Drive and 451 Tī Rākau Drive, no soil disturbance activities will take place as part of work within EB4L. However, local topography slopes toward the EB4L footprint and potential shallow groundwater contamination (if present) could migrate to the proposed areas of soil disturbance. Therefore, it is reasonable to assume contamination is likely present within areas of proposed soil disturbance.

Consent Requirements

The removal of a fuel storage system is a permitted activity where criteria are met under the NES-CS and AUP(OP). As there is currently no information pertaining to the soil and groundwater quality at 242 and 386 Tī Rākau Drive, there is insufficient evidence to demonstrate that the permitted activity criteria can be met. Therefore, adopting a conservative approach, resource consents as a discretionary activity are being sought for the proposed removal of fuel storage systems at both sites.

Proposed soil disturbance volumes related to proposed works, including at 242 and 386 Tī Rākau Drive and land adjacent to 550 Te Irirangi Drive and 451 Tī Rākau Drive, will likely exceed the permitted activity criteria under the NES-CS and the AUP(OP). As there is limited to no previous environmental investigations pertaining to contamination conditions available for these sites, adopting a cautious approach, discretionary resource consents are being sought for the soil disturbance activities.

Assessment of Effects and Mitigation

During the proposed works for EB3C and EB4L, construction workers could be exposed to contaminated soil and/or groundwater (direct contact, ingestion or inhalation) and there could be discharges of soil and groundwater contaminants to land, surface water or air. This assessment demonstrates that these effects can be appropriately managed and mitigated via implementation of the Contaminated Land Management Plan (CLMP) in conjunction with the Construction Environmental Management Plan and the Erosion and Sediment Control Plan required by conditions.

Hazardous materials such as asbestos and lead based paints may be encountered during structure removal and soil disturbance activities. Unexpected discoveries of hazardous materials during site works will be managed through implementation of the required CLMP.

1 Introduction

1.1 Overview of the Eastern Busway Project

The Project is a package of works focusing on promoting an integrated, multi-modal transport system to support population and economic growth in southeast Auckland. This involves the provision of a greater number of improved public transport choices and aims to enhance the safety, quality and attractiveness of public transport and walking and cycling environments. The Project includes:

- 5 km of two-lane busway
- Two new bridges for buses across Pakuranga Creek (Bridges A and B)
- A new bridge for buses crossing Guys Reserve and Whaka Maumahara Reserve (Bridge C)
- Improved active mode infrastructure (walking and cycling) along the length of the busway
- Three intermediate bus stations
- Two major interchange bus stations.

The Project forms part of the previous Auckland Manukau Eastern Transport Initiative (AMETI) programme (the programme) which includes a dedicated busway and bus stations between Panmure, Pakuranga and Botany town centres. The dedicated busway will provide an efficient rapid transit network (RTN) service between the town centres, while local bus networks will continue to provide more direct local connections within the town centre areas. The Project also includes new walking and cycling facilities, as well as modifications and improvements to the road network.

The programme includes the following works which are not part of the Eastern Busway Project:

- Panmure Bus and Rail Station and construction of Te Horeta Road (completed)
- Eastern Busway 1 (EB1) Panmure to Pakuranga (completed).

The Eastern Busway project consists of the following packages:

- Early Works Consents William Roberts Road (WRR) extension from Reeves Road to Tī Rākau Drive (LUC60401706); and Project Construction Yard at 169 – 173 Pakuranga Road (LUC60403744)
- Eastern Busway 2 (EB2) Pakuranga Town Centre, including the Reeves Road Flyover (RRF) and Pakuranga Bus Station
- Eastern Busway 3 Residential (EB3R) Tī Rākau Drive from the South-Eastern Arterial (SEART) to Pakuranga Creek, including Edgewater and Gossamer Intermediate Bus Stations
- Eastern Busway 3 Commercial (EB3C) –which commences from Riverhills Park along Tī Rākau Drive to Botany, including two new bridges, and an offline bus route through Burswood (this Assessment)
- Eastern Busway 4 Link Road (EB4L) Guys Reserve to the Botany Town Centre, including a link road through Guys Reserve and Whaka Maumahara Reserve to Te Irirangi/Town Centre Drive intersection (this Assessment).

The overall Project is shown in Figure 1 below.

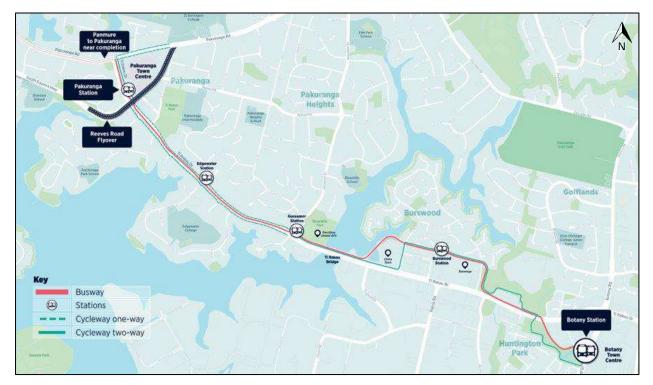


Figure 1. Project alignment.

1.2 Project Objectives

The Project Objectives are:

- 1. Provide a multimodal transport corridor that connects Pakuranga and Botany to the wider network and increases choice of transport options.
- 2. Provide transport infrastructure that integrates with existing land use and supports a quality, compact urban form.
- 3. Contribute to accessibility and place shaping by providing better transport connections between, within, and to the town centres.
- 4. Provide transport infrastructure that improves linkages, journey time and reliability of the public transport network.
- 5. Provide transport infrastructure that is safe for everyone.
- 6. "Provide or Safeguard future" transport infrastructure at (or in the vicinity of) Botany Town Centre to support the development of strategic public transport connection to Auckland Airport.

2 **Proposal Description**

The following sections provide a brief description of both EB3C and EB4L. These descriptions consist of the construction and operation of both EB3C and EB4L packages, with further details provided in the AEE and Notices of Requirement. A full set of proposed plans is attached to the AEE.

Figure 2. Eastern Busway 3 Commercial and 4 Link Road Project Extent

2.1 Eastern Busway 3 Commercial

The EB3C works will involve the establishment of an 'off-line' busway, cycleway, and stormwater upgrades. EB3C is presented on **Figure 3**. These works will take place within existing road reserves, Council reserves¹ and privately held land. The extent of works for EB3C runs between Riverhills Park (i.e., adjacent to the terminus of the EB3R package) in the west to Guys Reserve in the east, through the suburbs of Burswood and East Tāmaki.

The busway will be largely off-line (i.e., outside the current Tī Rākau Drive corridor), first crossing Pakuranga Creek by way of a new two-lane bridge (Bridge A) including abutments² and scour protection. It will then cross a coastal headland at 242 Tī Rākau Drive (a Mobil branded service station), and then an embayment within which a retaining wall, and a 4m² coastal reclamation will be constructed. The busway will cross a second headland at 254 Tī Rākau Drive (currently occupied by a pet store), before crossing a mangrove filled bay to the west of 262 Tī Rākau Drive (the 'Chinatown' retail business) via a second bridge (Bridge B). Bridge B will include two abutments with scour protection. Bridge B will require construction of a reinforced embankment at its northern end which includes imported fill, rip rap and permanent wick drains, and 549m² of coastal reclamation. In parallel, a retaining wall will be constructed to the eastern side of the embankment. Following this, the busway runs between the commercial area and residential area north of Tī Rākau Drive, crossing several residential sites. The busway also crosses Burswood Drive twice, with raised signalised crossings established to control both the busway and road traffic.

A new 'intermediate' style bus station will be established at Burswood before the busway then crosses over Burswood Esplanade Reserve and onto a widened Tī Rākau Drive (by the Howick and Eastern bus

¹ Including Burswood Esplanade Reserve and Bard Place Reserve

² The western abutment and associated scour protection was included in the EB3R consenting package

depot). The busway will then run beside the eastbound lanes of Tī Rākau Drive, before crossing over Tī Rākau Drive to connect with EB4L at Guys Reserve.

The busway will include a new cycleway, which will largely run parallel to the busway for most of this section of the Project. The exceptions to this include Bridge B, between 254 Tī Rākau Drive and Burswood Esplanade (west), for this section the cycleway will continue along Tī Rākau Drive before turning into Burswood Drive West, as well as where the cycleway runs behind the Howick and Eastern bus depot.

Other works included in EB3C are the relocation of existing utility services, the provision of new or upgraded stormwater infrastructure and open space upgrades. Stormwater works will involve new outfalls discharging to Pakuranga Creek (and its tributaries) and rain gardens.

Lastly, EB3C involves the establishment of two laydown areas, one at 242 Tī Rākau Drive and the other within the boundaries of Burswood Esplanade Reserve. Both laydown areas are located on land that will be occupied by the Project upon its completion.

Figure 3. Eastern Busway 3 Commercial Project Area

2.2 Eastern Busway 4 Link Road

The EB4L works will involve the establishment of an 'off-line' dedicated two-way busway, shared pathway and stormwater upgrades. EB4L is presented on **Figure 4**. These works will take place in Guys Reserve, Whaka Maumahara Reserve, existing road reserve and Botany Town Centre land for the intersection improvements on Town Centre Drive.

EB4L commences south of Tī Rākau Drive, crossing through Guys Reserve, Whaka Maumahara Reserve and ending at the intersection of Te Irirangi Drive/Town Centre Drive.

The works will primarily involve the construction of a new two-way busway corridor which will run along the eastern side of Guys Reserve and Whaka Maumahara Reserve to provide access for bus services between Pakuranga and Botany. The two-way busway is designed to integrate with EB3C and be a continuation of the EB3C busway.

This section of the busway will feature a bridge (Bridge C) approximately 350 m long. This bridge is needed due to the sloping topography of the Reserves.

The busway will then connect to Te Irirangi Drive, following alterations to the existing Te Irirangi Drive/Town Centre Drive intersection.

A shared cycle and footpath and minor retaining walls will also be constructed along the southern and western boundaries of Guys Reserve and Whaka Maumahara Reserve. The shared pathway will connect to existing walkways and will terminate at Te Irirangi Drive.

A new shared pathway and retaining wall will also be constructed along the western boundary of Te Irirangi Drive and is partially located within the Whaka Maumahara Reserve.

A new stormwater outfall (including riprap) will be constructed within Guys Reserve. The outfall will discharge stormwater over scour protection prior to its entry into a tributary of Pakuranga Creek. Additionally, a new stormwater connection will be constructed in Whaka Maumahara Reserve, adjacent to Te Irirangi Drive. This new connection will discharge via an existing outfall into the existing stormwater pond within the Reserve.

A construction laydown area will also be established within Guys Reserve, adjacent to Tī Rākau Drive and 47C Huntington Drive. A second laydown area will be established in Whaka Maumahara Reserve, between the existing stormwater pond and Te Irirangi Drive. Construction access will also be gained from Te Koha Road beside VTNZ's vehicle inspection premise located at 451 Tī Rākau Drive.

Figure 4. Eastern Busway 4 Link Road Project Area

3 Specialist Assessment

Chapter Summary

- This contaminated land assessment evaluates whether sites within EB3R and EB4L have been subject to potential contamination sources, if consents are required and the potential contamination-related effects of proposed works on human health and the environment.
- The approximate cut and fill volumes for EB3R and EB4L are 16,150 m³ and 38,880 m³, respectively.
 - This section includes a description of the regulatory framework applicable to EB3R and EB4L.

3.1 Assessment Content

This report is a review and assessment of contaminated land effects associated with the construction of the EB3C and EB4L packages of the Project.

This contaminated land assessment:

- Assesses whether sites within EB3C and EB4L have been subject to contaminating activities (if applicable) including the location(s) and type(s) of these activities
- Assesses the potential implications of identified sources in relation to the NES-CS
- Provides general commentary on rules in AUP(OP)
- Provides a general assessment of the potential effects of works within EB3C and EB4L on human health and the environment, and the potential mitigation measures to avoid, remedy or mitigate those effects (in relation to contamination effects).

The scope of this contaminated land assessment involves:

- Completing a site walkover of EB3C and EB4L
- Completing a desktop study including:
 - Review and assessment of previous environmental investigations in the vicinity of, and including, the EB3C and EB4L
 - Review of publicly available historical aerial photographs
 - o Review of Auckland Council (AC) contaminated land enquiry
- Completing preliminary soil and groundwater sampling
- Assessing the potential extent, effects, and mitigation measures of contamination in relation to EB3C and EB4L, if present.

This report has been completed in general accordance with the Ministry for the Environment (MfE), Contaminated Land Management Guidelines No 1: 'Reporting on Contaminated Sites in New Zealand' (MfE, 2021a). This report has been written and reviewed by suitably qualified and experienced practitioners (SQEPs) and otherwise complies with Regulation 3 of the NES-CS.

3.2 Specific Project Elements

The Erosion and Sediment Control Plan (ESCP; EBA,2023) details the areas within the proposed EBA packages including EB3C, where excavation during works is required.

3.2.1 EB3C Package

3.2.1.1 Removal of buildings and other assets

Construction of the Project will involve the removal of 39 houses, three commercial buildings, and roadside furniture. Specialist subcontractors will carry out the asbestos survey in the area prior to work commencing (EBA 2023a).

3.2.1.2 Earthworks

Construction of the Project will involve clearing of obstructions and vegetation and earthworks within the construction footprint. The Project construction footprint consists of approximately:

- 2 ha of land-based works
- 0.5ha of coastal works.

It is understood that the approximate total volume of excavation in the EB3C package comprises of $15,000 \text{ m}^3$ of cut and $17,550 \text{ m}^3$ of fill (EBA, 2023a).

Refer to Table 1 below for a breakdown of estimated earthwork volumes within EB3C.

Table 1. Total cut and fill quantities for EB3C

Indicative Cut and fill volumes	EB3C Quantity (approx.)	
Cut	15,000 m ³	
Fill	17,550 m ³	

3.2.2 EB4L Package

The total area of earthworks for EB4L is 24,130 m² and the total volume is presented in **Table 2**.

 Table 2. Volume of earthworks required for temporary and permanent EB4L works.

Description of works for EB4L	Cut (m³)	Fill (m ³)
Busway	200	2,960
Shared pathway and retaining walls along the southern and western boundaries of Guys Reserve and Whaka Maumahara Reserve	200	620
Temporary embankment	0	17,000
Temporary construction laydown areas	500	500
Te Irirangi Drive/Town Centre Drive intersection improvement works	250	250
Total	1,150	21,330

3.3 Regulatory Framework

As part of this assessment, consent may be required under the NES-CS and/or AUP(OP) if a piece of land disturbed as part of works within EB3C and EB4L has been subject to HAIL activities and the permitted activity standards of these regulatory documents cannot be complied with.

3.3.1 NES-CS

The NES-CS is designed to ensure that the land affected by contaminants in soil is appropriately identified and assessed when particular activities are undertaken, such as soil disturbance (Regulation 5(4)) and that the effects of activities occurring on a piece of land that may cause risk(s) to human health are managed (Regulation 5(7)). **Figure 5** demonstrates the decision process for determining whether resource consent is required under the NES-CS.

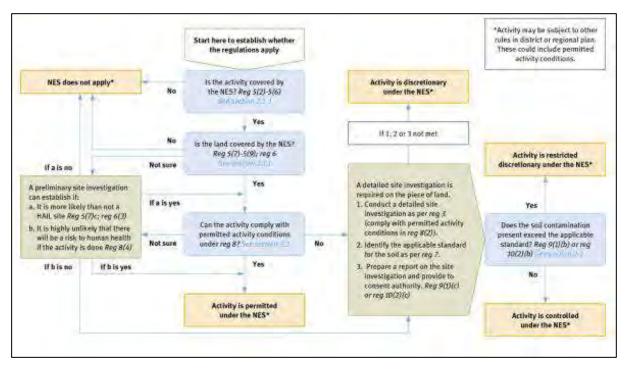


Figure 5. Process for determining resource consent requirements under the NES-CS

Regulation 5 (7) of the NES-CS describes land subject to the Regulations as:

(7) the piece of land is a piece of land that is described by 1 of the following:
(a) an activity or industry described in the Activities and Industries List (HAIL) is being undertaken on it
(b) an activity or industry described in the HAIL has been undertaken on it
(c) it is more likely than not that an activity or industry described in the HAIL is being or

has been undertaken on it.

The MfE has developed the HAIL, which is a compilation of 53 activities and industries that are considered likely to cause land contamination resulting from hazardous substance use, storage, or disposal, both currently and historically (MfE, 2023). The HAIL is intended to identify activities or industries where hazardous substances have the potential to cause soil and groundwater contamination. The HAIL groups similar industries together, which typically use or store hazardous substances that could cause contamination if these substances escaped from safe storage, were

disposed of on the site, or were lost to the environment through use. If the proposed activity is on, or intersects with, a piece of land that currently has, or has had, a HAIL activity on it, then the NES-CS applies.

3.3.2 Auckland Unitary Plan – Chapter E30 Contaminated Land

This section of the AUP(OP) addresses the effects of the discharge from contaminated land or land containing elevated levels of contaminants into air, or into water, or into land under section 15 of the Resource Management Act 1991. Chapter E30 of the AUP(OP) is relevant to EB3C and EB4L due to the potential discharges associated with soil disturbance that may liberate contaminants.

4 Methodology

Chapter Summary

This chapter presents the methodologies employed for the site walkovers, the desktop study and the soil and groundwater sampling.

As part of this contaminated land assessment, site walkovers were carried out at EB3C and EB4L, a desktop study was completed which included reviewing previous environmental investigation reports, historical aerial photographs, and Auckland Council (AC) site contamination enquiry, and soil and groundwater samples were collected. The methodologies are presented in the sections below.

4.1 Site Walkovers

A contaminated land specialist completed site walkovers at EB3C and EB4L to visually assess the site features along the Project.

4.2 Desktop Study

4.2.1 Previous Environmental Investigations

As part of the desktop study, the following previous environmental investigations pertinent to sites in the vicinity of and including the EB3C area were reviewed:

- Phase 1 PSI for the Pakuranga Scheme Assessment of the Auckland Manukau Eastern Transport Initiative (AMETI) Alignment, prepared by GHD Limited (GHD), 7 December 2012
- Multiple letter-reports prepared by URS and responses from AC in 2002 and 2003 for works completed at 380 Tī Rākau Drive
- AMETI Eastern Busway 2 and 3 Draft Environmental Assessment (Contamination), prepared by AECOM, 15 April 2019.

The previous environmental investigation reports are included in **Appendix A** and are summarised below.

4.2.2 Aerial Photographs

A review of publicly available historical aerial photographs has been conducted in the vicinity of EB3C and EB4L, to identify historical or current HAIL sites not identified in previous environmental investigations. Historical and current aerial photographs were obtained through the AC GeoMaps online portal, the Retrolens online portal and Google Maps. A review of aerial photographs was undertaken for the period 1940-2019. This allowed for the determination of land use changes and the identification of any pertinent items that have become apparent since the PSI in December 2012 and to allow for the identification of any pertinent land uses that may have been omitted during the development of previous environmental investigations. The aerial photographs are included in **Appendix B**.

4.2.3 AC Contamination Enquiry

EBA requested a contaminated land enquiry in June 2021 related to the AMETI EB3 and AMETI EB4 packages and on 30 November 2022, requested and received information pertaining to 380 Tī Rākau Drive (EB3C). Information received was reviewed and included data on landfill bores, air discharge, industrial and trade process consents and environmental assessments within the boundaries of the AMETI EB3 and EB3C packages. A copy of the AC contamination enquiry is included in **Appendix C**.

4.3 Preliminary Sampling Activities

Based on the results of the desktop study, a contaminated land specialist undertook preliminary soil and groundwater sampling on 29 June 2022. Details of the soil and groundwater sampling including logs, sampling details, laboratory analysis reports and results are included in **Appendix D**.

4.3.1 Soil Sampling

Soil samples were collected using a hand auger with a 50-millimetre (mm) diameter auger. The boreholes were advanced from surface to a maximum depth of 1.5 m below ground level (bgl). Soil encountered was logged and sampled, following which hand auger holes were backfilled with the remaining excavated soils.

To prevent cross contamination between samples, the hand auger was decontaminated via a three-step process using a combination of water and decon-90 solution and a new pair of nitrile gloves was worn. Soil samples were collected directly by hand and placed into laboratory supplied containers. All samples were stored in a chilled container and submitted to R J Hill Laboratories Limited (Hill Laboratories) in Auckland under standard chain of custody (CoC) procedure. CoC documentation is presented in **Appendix D**. The samples were analysed by Hill Laboratories for heavy metals, total petroleum hydrocarbons (TPH) and semi-quantitative asbestos.

Soil sampling was completed in general accordance with the MfE Contaminated Land Management Guidelines No 5 Site Investigation and Analysis of Soil (MfE, 2021b).

4.3.2 Groundwater Sampling

A qualitative grab groundwater sample was collected using a dedicated polyvinyl chloride bailers from a monitoring well installed for geotechnical purposes on 29 June 2022.

Prior to collecting the sample, the depth to groundwater and presence/absence of light non-aqueous phase liquid (LNAPL) was measured using an electronic oil-water interface probe.

The sample was collected into sample bottles supplied by Hill Laboratories. A duplicate sample was also collected for quality control purposes. The sample bottles were placed into a chilled storage container and submitted to Hill Laboratories in Auckland under standard CoC procedure. CoC documentation is presented in **Appendix D**. The samples were analysed by Hill Laboratories for pH, dissolved heavy metals (heavy metals), TPH and organochlorine pesticides (OCP).

4.3.3 Applicable Guidelines for Comparison

In accordance with the hierarchy defined in the MfE Contaminated Land Management Guidelines No 2: Hierarchy and Application in New Zealand of Environmental Guideline Values (MfE, 2011a), the soil analytical results have been compared against the criteria in the documents listed below:

4.3.3.1 Soil

- Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (MfE, 1999; Revised 2011). All pathways soil acceptance criteria for a commercial/industrial land use with sandy silt, silty clay and clay soil types and depth of contamination between < 1 and 1 – 4 based on the current land use. Hereinafter referred to as **Oil Industry Guidelines**
- The NES-CS

- Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (Canadian Council for Ministers of the Environment (CCME), 2002). Hereinafter referred to as **CCME Soil Guidelines**
- New Zealand Guidelines for Assessing and Managing Asbestos in Soil (The Building Research Association of New Zealand (BRANZ), 2017). Hereinafter referred to as the **BRANZ Guidelines**

In accordance with Chapter E, Section 30 of the AUP(OP), soil analytical results have also been compared to:

- Auckland Background Concentrations: AUP(OP) Table E30.6.1.4.2 Background ranges of trace elements in Auckland soils sources from Table 3 of TP153:2001 Background Concentrations of Inorganic Elements in Soils from the Auckland Region (Auckland Council, 2001)
- Permitted Activity Criteria: AUP(OP) Table E30.6.1.4.1 Permitted Activity Soil Acceptance Criteria
- **Oil Industry Guidelines**: Soil acceptance criteria for protection of groundwater quality. The source of contamination is less than 100 metres from a sensitive surface water body. Therefore, the soil acceptance criteria for the protection of groundwater quality in sensitive aquifers specified in Table 4.20 of the Oil Industry Guidelines apply at the Site.

4.3.3.2 Groundwater

- Australian and New Zealand Guidelines (ANZG); Fresh Water Quality for 80% level of protection for freshwater ecosystems (National Water Quality Management Strategy, 2000 -revised 2018). Hereinafter referred to as the ANZG (formerly known as ANZECC, 2000)
- Oil Industry Guidelines Tier 1 Groundwater Acceptance Criteria
 - Protection of outdoor inhalation exposure pathway for a commercial/ industrial land use.
 Groundwater analytical results have been compared against guidelines for silty clay soil types with groundwater at 2 4 m bgl (table 5.10).

5 Results – EB3C

Chapter Summary

Based on the site walkovers and the information reviewed, there are seven sites within 200 m of EB3C where HAIL activities were identified and other residential properties where hazardous materials like asbestos or lead based paint may be found.
 All soil and groundwater sampling results were below the applicable guideline values or laboratory limit of reporting.

5.1 Site Walkover - EB3C

Site walkovers of the EB3C Project were completed between June 2022 and January 2023.

The following is a summary of observations noted during the site walkovers along EB3C:

- Commercial and residential buildings are present within the Project area
- The area on the northern boundary of the Howick and Eastern Bus Depot (380 Tī Rākau Drive) is flat and grassed with steep banks sloping down to the north to an unnamed tributary of Pakuranga Creek
- Vegetation dieback was noted along the fence line of the Bus Depot, possibly from pesticide/herbicide spraying
- No olfactory evidence of contamination was noted.

5.2 No new HAIL sites were identified. Desktop Study – EB3C

5.2.1 Previous Environmental Investigations

5.2.1.1 Phase 1 PSI (GHD)

During their 2012 assessment, GHD reviewed packages EB2, EB3R, EB3C and EB4, areas previously referred to as Packages 3 & 4. The purpose of the PSI was to support AT in meeting the requirements of the NES-CS as it applies to 'a piece of land'. As such, the objective of the PSI was to assess the likelihood of the presence of soil contamination resulting from historical and/or current land use activity within or adjacent to the EBA packages.

The PSI comprised of a review of information from the following sources:

- Draft alignment plans as of October 2012 developed by GHD/Aurecon
- Selected publicly available historical aerial photographs from 1940 to 2010
- Collection of photographs as part of a walkover conducted on 26 September 2012
- AC contaminated sites register
- AC groundwater borehole register
- Readily available site investigation reports resulting from a site register search
- Readily available geology and hydrogeology information
- Publicly available information on the environmental fate of contaminants
- Identification of sensitive human and/or environmental receptors.

GHD presented the following key findings and conclusions relevant to EB3C:

• There are a number of geological units present, with the most prominent being rhyolitic pumiceous deposits of the Tauranga Group. The industrial zone between Trugood Drive and Burswood Drive is a mottled patchwork of construction fill and basalt and basanite lavas derived

from the Auckland Volcanic Field. To the west of the intersection between Botany Road and Tī Rākau Drive, near Bard Place Reserve, there is a rhyolitic pumice deposit. The fragments in this unit are mud to sand sized and include non-welded ignimbrite, tephra (ash fall volcanic deposits), and alluvial pumice deposits

- A site contamination enquiry was completed, seeking records from AC. A borehole register search revealed boreholes were advanced at two contaminated and potentially contaminated sites at 257 and 380 Tī Rākau Drive for monitoring purposes. At the time of this contaminated lands assessment, AC had no records of monitoring reports from the sites. 257 Tī Rākau Drive is close to the proposed cycleway and not near significant areas of soil disturbance
- A walkover identified Pakuranga Creek (adjacent to the north and east of 386 Tī Rākau Drive) as a sensitive receptor
- GHD identified four HAIL sites along EB3C and three additional sites within 200 m of EB3C. The report stated the regulations of the NES-CS apply on the basis of HAIL category H adjacent sites. Category H is defined as 'any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment'. The identified HAIL sites are detailed in **Table 3** below and presented on **Figure 6**.
- GHD recommended intrusive soil investigations were to be undertaken to assess potential contaminants along the alignment, at locations where the adjacent land use has been identified as having current or historical HAIL activities where the likelihood of contamination has been assessed as medium to high.

Site Name Location Landuse Activity		Landuse Activity	Key Contaminants of Concern*
242 Tī Rākau Drive	On proposed busway/cycleway	Mobil Service Station	HAIL category F7- Polycyclic aromatic hydrocarbons (PAH) in coal, lubricating oil, hydrocarbon fuels, benzene, toluene, ethylbenzene and xylenes (BTEX)
245 Burswood Drive	Directly adjacent (west) of proposed cycleway	Best Automotive Clinic, now Auto Super Shoppe Pakuranga	HAIL category F4- Metals and metalloids, solvents, chlorinated solvents, petrol, diesel, lubricating oil, PAHs, urea, ethylene glycol
269 Tī Rākau Drive	Within 200 m (south) of proposed cycleway	Sandvik Materials Technology	HAIL category D5- Solvents, chlorinated solvents, metals and metalloids, lubricating oil, alkalis, acids
279 Tī Rākau Drive	Within 200 m (south-east) of proposed cycleway	Former Timber Storage Yard	HAIL category A18- Chromated copper arsenate (CCA), boron, pentachlorophenol, creosote, solvents, tributyltin, dioxins and difurans, pesticides, synthetic pyrethroids
284 Tī Rākau Drive	Within 200 m (east) of proposed cycleway	Z Service Station	HAIL category F7- PAH in coal, lubricating oil, hydrocarbon fuels, BTEX

Table 3. Summary of HAIL Sites on or directly adjacent to EB3C or within 200 m of EB3C

Site Name	Location	Landuse Activity	Key Contaminants of Concern*
380 Tī Rākau Drive	Directly adjacent (north) of proposed busway and directly adjacent (south) of proposed cycleway	Howick and Eastern Bus Depot	HAIL category F8- PAH in coal, lubricating oil, hydrocarbon fuels, BTEX
386 Tī Rākau Drive	On proposed busway and directly adjacent (south) of proposed cycleway	Gull Service Station	HAIL category F7- PAH in coal, lubricating oil, hydrocarbon fuels, BTEX

*As presented in the HAIL document (MfE, 2023).

5.2.1.2 380 Tī Rākau Drive (URS)

URS completed initial investigation works at 380 Tī Rākau Drive between 29 November and 12 December 2002 and product recovery between 20 December 2002 and 1 October 2003. The works comprised:

- Drilling of two deep (10 m bgl) and two shallow (4 m bgl) soil bores on each of the four sides of the tank pit
- Installation of one deep (10 m bgl) and two shallow (0.8 m bgl) monitoring wells
- Collection of a groundwater sample from the deep monitoring well
- Determination of presence of separate phase product and depth to water in all monitoring wells and in two wells installed previously within the tank pit
- Removal of a total of 5300 litres of hydrocarbon product from the tank pit as of 1 October 2003.

In summary, hydrocarbon product and water appeared to be perched and contained within the tank pit due to the low permeabilities of the surrounding silt and clay soils. The soils adjacent to the tank returned TPH results below applicable guidelines. There was no evidence that hydrocarbon product had migrated within either the shallow granular basecourse fill material or stormwater services.

In letters dated 28 January 2003 and 26 November 2003, Auckland Regional Council confirmed it did not require a resource consent to authorise the discharge of residual contaminants to ground. The letters also acknowledged the successful removal of product from within the tank pit and that they would approve the decommissioning of the system. EBA notes that no light end hydrocarbon results like benzene, toluene, ethylbenzene and xylenes (BTEX) were available for review for soil or groundwater.

5.2.1.3 Environmental Assessment (AECOM)

In 2018 and 2019, following recommendations of the 2012 PSI completed by GHD, AECOM undertook a data gap analysis and site investigation in support of the design for the proposed AMETI EB2 and EB3 packages (now EB2 to EB3C) and prepared a draft environmental assessment.

The gap analysis identified areas where further investigation was required. Between April and August 2018 and February 2019, six machine drilled boreholes and thirty-three environmental hand augered boreholes were advanced within the wider EBA works, of which eighteen soil samples were submitted for analysis from five hand augered boreholes (EHA113, EHA114, EHA116, EHA119 and EHA120) and two machine drilled boreholes (DH108 and DH109) within EB3C at depths between 0.1 and 1.5 m bgl. The investigation locations relevant to the EB3C package are presented in **Figure 6** below.

Samples were analysed for the following contaminants:

- Heavy metals,
- TPH,

- Benzene, toluene, ethylbenzene and xylenes (BTEX),
- Polycyclic aromatic hydrocarbons (PAHs),
- Pentachlorophenol (PCP), and
- Semi-quantitative asbestos.

The environmental assessment focussed on the collection of soil samples for laboratory analysis from materials within anticipated areas of soil disturbance and areas adjacent to HAIL sites identified in the 2012 PSI (refer to **Table 4** below). Soil samples were analysed for contaminants associated with the HAIL activities at or in the vicinity of the EB3C package.

The Data Gap Assessment is included in section 3.0 of the Draft Environmental Assessment in **Appendix A.**

Figure 6. 2018 Environmental investigation locations within the proposed EB3C

Sampling Location	Rationale
EHA113	Area of proposed soil disturbance at 242 Tī Rākau Drive
EHA119*	Adjacent to 269 Tī Rākau Drive
EHA114*	Adjacent to 284 Tī Rākau Drive
EHA120*	Adjacent to 279 Tī Rākau Drive
DH108	Adjacent to 380 Ti Rākau Drive and an area of proposed soil disturbance
EHA116	Adjacent to 380 Ti Rākau Drive and an area of proposed soil disturbance
DH109	Adjacent to 386 Tī Rākau Drive (Petrol Station) and an area of proposed soil disturbance

Table 4. Summary of sample locations from the 2018 Environmental Investigation relevant to EB3C package

*Note: locations are close to the proposed cycleway (not near significant areas of soil disturbance).

A summary of the analytical results in relation to EB3C is as follows:

- All soil analytical results were below criteria for NES-CS, Oil Industry Guidelines and Permitted Activity Criteria.
- All soil analytical results for TPH, BTEX, PAH and PCP concentrations were below the laboratory limit of reporting (LOR).
- Heavy metal concentrations from all soil analytical results were below the Auckland Background Concentrations (volcanic), with the exception of a surface sample collected at EHA113, which was above the Auckland Background Concentrations (volcanic) for lead.

5.2.2 Aerial Photographs

The first step of the aerial photograph review was to look at the land uses surrounding the entire length of the proposed EB3C package. The review then focused in on the three HAIL sites located on or directly adjacent to the EB3C package during the desktop review to get a more in-depth look at changes over time (242, 380 and 386 Tī Rākau Drive).

The review of aerial photographs highlighted the following key items across EB3C:

5.2.2.1 EB3C package

- Much of the land is undeveloped farmland in the 1940 aerial photograph, with the exception of scattered residential dwellings and ancillary farm buildings
- Tī Rākau Drive Bridge was constructed sometime between 1968 and 1975. In the 1975 aerial photograph, Tī Rākau Drive extends from the Tī Rākau Drive Bridge to the east for approximately 800 m, where it meets Harris Road. The remainder of the landscape is residential dwellings and ancillary farm buildings scattered across agricultural land
- Between 1988 and 1995 much of the EB3C area was developed, with residential dwellings established in the Burswood area, as well as commercial buildings along Tī Rākau Drive
- The building at 245 Burswood Drive was developed between 1988 and 1995, prior to which the area was either undeveloped or used for stock grazing. Google Street View confirms the site has been a motor vehicle workshop since at least 2008
- The site at 284 Tī Rākau Drive was developed between 1988 and 1995, prior to which the area was either undeveloped or used for stock grazing. Google Street View confirms the site has been a service station since at least 2008
- In the 1996 aerial photograph, development has begun at the site at 32 Torrens Road. In the northeast corner of the site a building has been constructed with the balance of the site either undeveloped or used as a storage yard. The site was fully developed by 2001, with the adjacent lot to the north used as either a carpark or car storage lot. Prior to establishment the site was either undeveloped or used for stock grazing. Google Street View confirms the site has been a Honda Service, Panel and Paint workshop since 2008.

5.2.2.2 242 Tī Rākau Drive

• The Service Station at 242 Tī Rākau Drive was developed between 1996 and 2001, prior to which the area was either undeveloped or used for pastoral farming.

5.2.2.3 380 Tī Rākau Drive

- The Howick and Eastern Bus Depot at 380 Tī Rākau Drive began development in 1996 and was completed sometime before 2001
- A tributary of the Pakuranga Creek flows at the back of the site
- The land appears to be previously undeveloped and used for pastoral farming

5.2.2.4 386 Tī Rākau Drive

- The service station at 386 Tī Rākau Drive began development around 1996 and was completed sometime before 2001
- A tributary of the Pakuranga Creek flows at the back of the site
- The land appears to be previously undeveloped and used for pastoral farming.

5.2.3 Auckland Council Contamination Enquiry

The information received from the AC contamination enquiry in relation to EB3C is detailed below.

- The 2021 contamination enquiry identified four sites as HAIL within a 200 m radius of the AMETI EB3. However, only 279 Tī Rākau Drive is within a 200 m radius of the proposed cycleway at the corner of Tī Rākau Drive and Burswood Drive. The site is more than 200 m away from the proposed EB3C busway (Figure 6)
- All bores identified within the enquiry area were either expired or the assessments were complete
- Discharge consents were noted at service stations located at 242 Tī Rākau Drive, 284 Tī Rākau Drive and 380 Tī Rākau Drive
- No closed landfills or pollution incidents were noted within EB3C.

A copy of the AC contamination enquiry is included in **Appendix C**.

5.3 Soil and Groundwater Sampling – EB3C

Following the desktop study, it was identified that further investigation was required at 242, 380 and 386 Tī Rākau Drive. As both 242 and 386 Tī Rākau Drive were in use as service stations at the time of investigation, access to the sites to assess the soil and groundwater conditions was not possible. EBA completed soil and groundwater sampling along the proposed cycleway north of 380 Tī Rākau Drive. The results are presented below.

5.3.1 Soil sampling

EBA advanced four hand augered boreholes within the cycleway along the northern boundary of the Howick and Eastern Bus Depot at 380 Tī Rākau Drive on 29 June 2022 (EHA124-EHA127). The location of the boreholes is presented on **Figure 7** below.

Soils encountered generally comprised minor layers of topsoil underlain by fill materials including silts and clays.

The following is the summary of the soil analytical results from the sampling activities. The results are compared to relevant guidelines and presented in **Table D1** in **Appendix D**.

- All soil analytical results were below all applicable guidelines
- All soil analytical results for TPH concentrations were below the laboratory LOR
- Heavy metal concentrations from all soil analytical results were below the Auckland Background Concentrations.

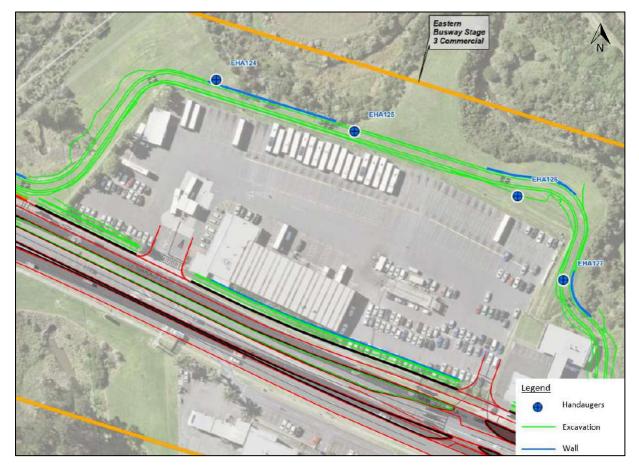


Figure 7. Soil sample locations along the proposed cycleway north of 380 Tī Rākau Drive.

5.3.2 Groundwater Samples

EBA collected a grab sample and duplicate sample from monitoring well DH322 on 29 June 2022. The location of DH322 is presented on **Figure 8** below. The following is a summary of the groundwater analytical results. The results are compared to relevant guidelines and presented in **Table D2** in **Appendix D**.

- Groundwater was measured at 3.134 m bgl
- Minor concentrations of dissolved arsenic, nickel and zinc were detected in the sample collected from DH322
- All analytes returned concentrations below the relevant guidelines
- Concentrations of TPH and OCPs returned results below the laboratory LOR
- The duplicate sample, collected for quality control purposes, returned a maximum relative percentage difference of 24.3%. A field duplicate relative percentage difference value of less than 30% is generally considered acceptable. There are no concerns with the laboratory dataset.



Figure 8. Location of monitoring well DH322.

6 Consent Requirements – EB3C

Chapter Summary

- Discretionary consents are sought for works at 242 Tī Rākau Drive and 386 Tī Rākau Drive.
 - The remaining HAIL sites identified within EB3C have been excluded from consent requirements due to the following:
 - The sites are not located within or adjacent to any area of significant excavation
 - The sites have been evaluated and contamination is unlikely to be present.

Based on the information reviewed, there are seven sites within, or within 200 m of, EB3C where HAIL activities were identified and a number of residential properties where hazardous materials like asbestos or lead based paint may be found. **Table 5** presents these sites against a summary of the proposed soil disturbance activities and likelihood of contamination to be present and an assessment of whether resource consents are required.

Site Name	Land use Activity	Summary	Consent Required
245 Burswood Drive	Best Automotive Clinic, now Auto Super Shoppe Pakuranga	Proposed cycleway is adjacent to the site. No soil disturbance is proposed within the site boundaries. No exposure to potentially contaminated groundwater as the proposed earthworks for the cycleway is likely to be shallower than the depth to groundwater.	No
269 Tī Rākau Drive	Sandvik Materials Technology	The sites are within 200 m of the proposed cycleway. No soil disturbance is proposed within the site boundaries.	No
279 Tī Rākau Drive	Former Timber Storage Yard	The sites were investigated in 2018. No soil contamination was encountered. No exposure to potentially contaminated groundwater as the proposed earthworks for the cycleway is likely to be shallower than the depth to groundwater.	No
284 Tī Rākau Drive	Service Station		No
380 Tī Rākau Drive	Howick and Eastern Bus Depot	Remedial works completed in 2003. Soil and groundwater TPH results were below applicable guidelines. Site investigated in 2018 and 2022. No soil or groundwater contamination encountered.	No
242 Tī Rākau Drive	Service Station	Limited site investigation completed in 2018. Soil disturbance proposed onsite. Potential for migration of contaminants into area of soil disturbance within EB3C.	Yes
386 Tī Rākau Drive	Service Station	Limited site investigation completed in 2018. Soil disturbance proposed onsite. Potential for migration of contaminants into area of soil disturbance within EB3C.	Yes
Various Residential Properties	Residential Properties	Historical aerials identified potential for hazardous building materials like asbestos and lead based paint to be present in EB3C. Covered under unexpected discoveries.	No

Table 5. Summary of findings within EB3C.

6.1 242 and 386 Tī Rākau Drive

242 Tī Rākau Drive and 386 Tī Rākau Drive were identified as HAIL sites (service stations) in the 2012 PSI. A request to the AC contaminated land team returned no environmental investigations pertaining to these sites and soil and groundwater assessments could not be completed in 2022. Therefore, adopting a conservative approach, it is considered reasonably likely that contamination is present onsite.

At 242 Tī Rākau Drive and 386 Tī Rākau Drive, two proposed activities that may trigger consent requirements under the NES NES-CS and AUP(OP) will take place:

- <u>Disturbing the soil</u>: 242 Tī Rākau Drive is located within the soil disturbance area for the proposed busway as part of works within EB3C. 386 Tī Rākau Drive is located within a soil disturbance area for a pedestrian/cycleway as part of works within EB3C.
- <u>Removing a fuel storage system</u>: The sites are still active service stations with underground storage tanks (USTs) and associated fuel lines located within/directly adjacent to the soil disturbance areas. The project proposal involves the closure of the sites and subsequent removal of service station assets (USTs, fuel dispensers etc).

6.1.1 NES- CS

Under Regulation 5(7) and 5(8), the NES-CS applies to both sites for the soil disturbance and fuel storage system removal activities undertaken as part of EB3C works.

Soil disturbance at both sites will likely exceed the permitted activity requirements for soil disturbance volume as allowed under Regulation 8(3) of the NES-CS (25 m³ per 500 m² of soil disturbance and 5 m³ per 500 m² of removal). As Detailed Site Investigations (DSI) are not able to be completed prior to submission of this report, consent under controlled or restricted discretionary status is not possible.

The removal of a fuel storage system is a permitted activity where requirements are met under Regulation 8(1) of the NES-CS. As there is currently little information pertaining to the removal of the fuel storage systems at both 242 and 386 Tī Rākau Drive and DSIs were not able to be completed prior to submission of this report, there is insufficient evidence to demonstrate that the permitted, controlled, or restricted discretionary activity requirements can be met.

The soil disturbance and removal of fuel storage systems at both sites will need to be completed under a resource consent for a discretionary activity (Regulation 11) and any potential effects to human health managed through a CLMP.

6.1.2 Auckland Unitary Plan

As both 242 Tī Rākau Drive and 386 Tī Rākau Drive are considered reasonably likely to contain elevated levels of contaminants, consent is sought under the AUP(OP) for the following activities:

- Soil disturbance volumes at both sites will likely exceed the permitted activity criteria of 200 m³ outlined in Chapter E30.6.1.2.
- The removal of a fuel storage system is unlikely to meet the permitted activity requirements under Chapter E30.6.1.5(2).

As there is currently little information pertaining to the removal of the fuel storage systems at both 242 and 386 Tī Rākau Drive and DSIs are not able to be completed prior to submission of this report, consent under permitted and controlled activity status is not possible for either activity.

Therefore, adopting a cautious approach, resource consents for a discretionary activity are being sought for the soil disturbance and removal of the fuel storage systems and any potential contamination-related effects will be appropriately managed through the conditions of consent and a CLMP.

7 Results – EB4L

Chapter Summary

• Based on the site walkover and the information reviewed, there are two sites within 200 m of EB4L where HAIL activities were identified.

7.1 Site Walkover – EB4L

A site walkover of EB4L was completed on 12 January 2023.

The following is a summary of observations noted during the site walkover:

- A Z service station at 550 Te Irirangi Drive
- Tyre City, Pitstop and VTNZ at 451 Tī Rākau Drive
- The banks adjacent to the northeast of Whaka Maumahara are steep, with a stormwater culvert feeding the stormwater pond along the eastern edge
- Refuse (including tyres, rubbish, and disused appliances) from fly-tipping throughout Guys Reserve
- A pipeline (Watercare Asset) in the middle of Guys Reserve.

7.2 Desktop Study – EB4L

7.2.1 Previous Environmental Investigations

As part of the desktop study, a review was undertaken of the following previous environmental investigation pertinent to sites in the vicinity of EB4L:

• Phase 1 Preliminary Site Investigation for the Pakuranga Scheme Assessment of the Auckland Manukau Eastern Transport Initiative (AMETI) Alignment, prepared by GHD Limited (GHD), 7 December 2012.

The previous environmental investigation report is included in Appendix A.

7.2.1.1 Phase 1 PSI (GHD)

During their 2012 assessment, GHD reviewed packages EB2, EB3R, EB3C and EB4L, areas previously referred to as Packages 3 & 4. The purpose of the PSI was to support AT in meeting the requirements of the NES-CS as it applies to 'a piece of land'. As such, the objective of the PSI was to assess the likelihood of the presence of soil contamination resulting from historical and/or current land use activity within or adjacent to the EBA packages.

The PSI comprised of a review of information from the following sources:

- Draft alignment plans as of October 2012 developed by GHD/Aurecon
- Selected publicly available historical aerial photographs from 1940 to 2010
- Collection of photographs as part of a walkover conducted on 26 September 2012
- AC contaminated sites register
- AC groundwater borehole register
- Readily available site investigation reports resulting from a site register search
- Readily available geology and hydrogeology information
- Publicly available information on the environmental fate of contaminants

• Identification of sensitive human and/or environmental receptors.

GHD presented the following key findings and conclusions relevant to EB4L:

- There are a number of geological units present, with the most prominent being rhyolitic pumiceous deposits of the Tauranga Group. To the west of the intersection between Botany Road and Tī Rākau Drive, near Bard Place Reserve, there is a rhyolitic pumice deposit. The fragments in this unit are mud to sand sized and include non-welded ignimbrite, tephra (ash fall volcanic deposits), and alluvial pumice deposits
- 550 Te Iririangi Drive is identified as a Z branded service station and may present issues relating to hydrocarbon contamination during the construction phase of the alignment along Te Koha Road as a result of underground fuel storage facilities on site. The report stated the regulations of the NES-CS apply on the basis of HAIL category H adjacent sites. Category H is defined as 'any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment'. GHD identified the following potential contaminants of concern associated with 550 Te Irirangi Drive: TPH and BTEX
- GHD recommended intrusive soil investigations were to be undertaken to assess potential contaminants along the alignment, at locations where the adjacent land use has been identified as having current or historical HAIL activities where the likelihood of contamination has been assessed as medium to high.

7.2.2 Aerial Photographs

The first step of the aerial photograph review was to look at the land uses surrounding the entire length of the proposed EB4L package. The review then focused in on the two HAIL sites located directly adjacent to the EB4L package during the desktop review and January 2023 site walkover to get a more in-depth look at changes over time (550 Te Irirangi Drive and 451 Tī Rākau Drive). The review of aerial photographs highlighted the following key items across EB4L:

7.2.2.1 EB4L package

- Between 1940 and 1988 the majority of the land in the EB4L area is undeveloped farmland, with the exception of scattered residential dwellings and ancillary farm buildings. A road transects the middle of the EB4L area. Trees are visible in Guys Reserve, adjacent to the south of the EB4L area
- In the 1994 aerial image, earthworks are visible in the eastern section of EB4L, which extend to the northeast where a commercial development has begun. Tī Rākau Drive has been constructed to the north of EB4L. The majority of the EB4L area remains unchanged from the 1988 aerial image
- In the 1996 aerial image, further earthworks have begun in the eastern portion of EB4L, which extend to the south and east. The majority of the EB4L area remains unchanged from the 1988 aerial image
- In the 2001 aerial image, development has begun within the EB4L project area, with exposed soil and concrete foundations visible. Te Koha Road and Te Irirangi Drive have been constructed. The Whaka Maumahara (stormwater pond) has been constructed. The remainder of EB4L through Guys Reserve appear unchanged from the previous aerial image.
- In the 2003/2004 and 2015/2016 aerial images, construction is complete in the northern portion of the EB4L project area

• From the aerial images reviews the EB4L project area appears unchanged between 2003/2004 and 2023.

7.2.2.2 550 Te Irirangi Drive

- The Z service station at 550 Te Irirangi Drive was constructed between 1996 and 2001. Prior to construction the area was undeveloped farmland
- Development was completed by 2001 and the structure and surrounding surfaces on site do not appear to have been altered since development.

7.2.2.3 451 Tī Rākau Drive

- Development at 451 Tī Rākau Drive began between 1996 and 2001. Prior to development the site was undeveloped farmland
- Development was completed by 2006 and the structure and surrounding surfaces on site do not appear to have been altered since development.

7.2.3 Auckland Council Contamination Enquiry

EBA requested a contaminated land enquiry in June 2021 related to the AMETI EB4 package. No information was returned regarding the EB4L footprint.

A copy of the AC contamination enquiry is included in **Appendix C.**

7.3 Soil and Groundwater Sampling – EB4L

Based on the results of the desktop study, preliminary soil and groundwater samples were not collected along the EB4L footprint as soil disturbance activities will not take place on the two HAIL sites identified.

8 Consent Requirements – EB4L

 Discretionary consents are sought for works in relation to 550 Ti Irirangi Drive and 451 Ti Rākau Drive. 	Chapter Summary		
	•	, 5,	

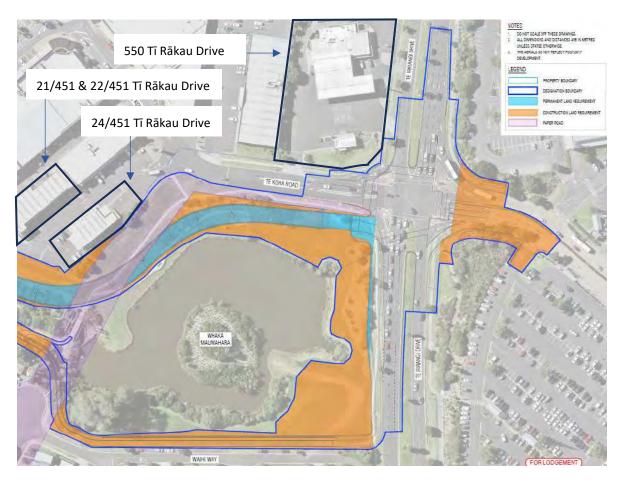

Based on the information reviewed, there are two sites within 200 m of EB4L where HAIL activities (category H) were identified: 550 Te Irirangi Drive and 451 Tī Rākau Drive. **Table 6** presents these sites against a summary of the proposed soil disturbance activities and likelihood of contamination to be present and an assessment of whether resource consents are required. The sites are presented on

Figure 9.

Table 6. Summary of findings within EB4L

Site Name	Landuse Activity	Summary	Consent Required
550 Te Irirangi Drive	Z Service Station	No information pertaining to the contamination conditions is available for the sites. Potential exists for migration of contaminants into areas of soil disturbance within EB4L.	Yes
21/451 Tī Rākau Drive	Tyre City		Yes
22/451 Tī Rākau Drive	Pit Stop Botany Downs		Yes
24/451 Tī Rākau Drive	VTNZ Botany		Yes

8.1 550 Te Irirangi Drive

550 Te Irirangi Drive was identified as a HAIL site (service station) in the 2012 PSI. A request to the AC contaminated land team returned no environmental investigations pertaining to this site and a soil and groundwater assessment could not be completed in 2023.

No soil disturbance activities will take place onsite, however, local topography directly adjacent to the site slopes south toward areas of proposed soil disturbance. Any potential shallow groundwater

contamination would be expected to flow towards the proposed area of soil disturbance works, following topography. Therefore, a conservative assumption is to consider it reasonably likely for contamination to be migrating offsite to areas of proposed soil disturbance.

8.1.1 NES-CS

Under Regulation 5(7), the NES-CS applies for the soil disturbance activities undertaken as part of EB4L works. Earthworks adjacent to 550 Te Irirangi Drive will likely exceed the permitted activity criteria for soil disturbance volume as allowed under Regulation 8(3) of the NES-CS (25 m³ per 500 m² of soil disturbance and 5 m³ per 500 m² of removal). As a DSI was not completed prior to submission of this report, consent under controlled or restricted discretionary status is not possible. Therefore, resource consent for a discretionary activity is sought under Regulation 11 of the NES-CS for proposed soil disturbance activities and any potential effects to human health will be managed through the required CLMP and conditions.

8.1.2 Auckland Unitary Plan

As 550 Te Irirangi Drive could contain elevated levels of contaminants that may have migrated to the areas of earthworks along EB4L, consent is required under the AUP(OP). Soil disturbance adjacent to 550 Te Irirangi Drive will likely exceed the permitted activity criteria of 200 m³ outlined in Chapter E30 of the AUP(OP). As a DSI is not able to be completed prior to submission of this report, consent under controlled activity status is not possible. Therefore, resource consents for discretionary activities are sought for proposed soil disturbance and any potential effects will be managed through the required CLMP and conditions.

8.2 451 Tī Rākau Drive

21/451 Tī Rākau Drive, 22/451 Tī Rākau Drive and 24/451 Tī Rākau Drive have been identified as HAIL sites (motor vehicle workshops). A request to the AC contaminated land team returned no environmental investigations pertaining to 451 Tī Rākau Drive. Therefore, a conservative assumption is to consider it reasonably likely for contamination to be present onsite.

No soil disturbance activities will take place on 451 Tī Rākau Drive, however, local topography directly adjacent to the site slopes southwest toward areas of proposed soil disturbance. Any potential shallow groundwater contamination would be expected to flow towards the proposed area of soil disturbance works, following topography. Therefore, a conservative assumption is to consider it reasonably likely for contamination to be migrating offsite to areas of proposed soil disturbance.

8.2.1 NES-CS

Under Regulation 5(7), the NES-CS applies for the soil disturbance activities undertaken as part of EB4L works. Soil disturbance adjacent to 451 Tī Rākau Drive will likely exceed the permitted activity criteria for soil disturbance volume as allowed under Regulation 8(3) of the NES-CS (25 m³ per 500 m² of soil disturbance and 5 m³ per 500 m² of removal). As a DSI is not able to be completed prior to submission of this report, consent under controlled or restricted discretionary status is not possible. Therefore, resource consent for a discretionary activity is sought under Regulation 11 of the NES-CS for proposed soil disturbance activities and any potential effects to human health will be managed through the required CLMP and conditions. AUP(OP)

As the sites at 451 Tī Rākau Park identified in **Table 6** could contain elevated levels of contaminants that may have migrated to the areas of earthworks along EB4L, consent is required under the AUP(OP). Soil

disturbance volumes adjacent to 541 Tī Rākau Drive will likely exceed the permitted activity criteria of 200 m³ outlined in Chapter E30 of the AUP(OP). As DSI's were not completed prior to submission of this report, consent under controlled activity status is not possible. Therefore, resource consents for discretionary activities are sought for proposed soil disturbance and any potential effects will be managed through the required CLMP and conditions.

9 Contaminated Land Effects – EB3C and EB4L

Chapter Summary

Based on the findings within this assessment, the following sites were identified within EB3C and EB4L as having the potential to generate contamination-related effects during construction:

- 242 Tī Rākau Drive
- 386 Tī Rākau Drive
- 451 Tī Rākau Drive
- 550 Te Irirangi Drive

The potential contamination-related effects associated with proposed earthworks in relation to these sites include:

- Exposure to contaminated soil and/or groundwater to construction workers (direct contact, ingestion or inhalation)
- Discharge of soil and groundwater contaminants to land, surface water or air during construction.

Based on the findings of this assessment, the potential effects from contaminated land for the purpose of construction activities within EB3C and EB4L are presented in **Table 7** below.

Table 7. Assessment of effects within EB3C and EB4L.

Site Name	Land Use Activity	Potential Effects
242 Tī Rākau Drive	Mobil Service Station	
386 Tī Rākau Drive	Gull Service Station	Exposure of construction workers to potentially contaminated soil
550 Te Irirangi Drive	Z Service Station	and/or groundwater (direct contact, ingestion, or inhalation).
21/451 Tī Rākau Drive	Tyre City	Discharge of potential soil and groundwater contaminants to land, surface water or air during construction.
22/451 Tī Rākau Drive	Pit Stop Botany Downs	
24/451 Tī Rākau Drive	VTNZ Botany	
Various residential properties removed as	Accidental release of hazardous building	Exposure to contaminated soil for construction workers (ingestion or inhalation).
part of EB3C works	materials	Discharge of soil contaminants to land, surface water or air during construction.

10 Mitigation

Chapter Summary

- Hazardous building materials like asbestos and lead based paint may be present during works within EB3C. The CLMP should be consulted for guidance during works.
- It is likely unexpected discoveries of hazardous material will be encountered during works. The CLMP should be consulted for guidance during works.

10.1 Residential Properties

As part of the proposed works within EB3C, numerous residential buildings are planned for deconstruction/demolition. As identified in the aerial images in Section 5, numerous houses in the EB3C package were constructed pre-2000 and it is possible that some buildings may contain hazardous building material such as asbestos or lead based paint. Such contaminants have the potential to generate localised effects when soil disturbance occurs. Prior to the removal of structures within the EB3C area, an asbestos survey will be required in accordance with Health and Safety at Work (Asbestos) Regulations (Worksafe New Zealand Limited, 2016) and BRANZ guidelines. No deconstruction/ demolition of residential properties is proposed within the EB4L alignment.

10.2 Unexpected Discoveries

It is considered more likely than not that during the course of the works, unexpected discoveries of impact in soils will be encountered across EB3C and EB4L. For example, this could include hazardous building materials from demolition work/fly tipping, visual observations of staining or the presence of odours. The effects from unexpected discoveries can be appropriately mitigated via implementation of the measures detailed in the CLMP as required through conditions of consent.

10.3 Contaminated Land Management Plan (CLMP)

Based on the information reviewed as part of this contaminated land assessment report, there is the potential for contaminated soils and groundwater or hazardous building materials to be encountered during the construction of EB3C and EB4L which may have the potential to impact the health of workers, the health of the public and surrounding environment. However, it is considered that any effects can be appropriately managed via implementation of the required CLMP in conjunction with the Construction Environmental Management Plan (CEMP) and the Erosion and Sediment Control Plan (ESCP) (all required by the consent conditions).

The CLMP should be prepared by a suitably qualified environmental practitioner (SQEP) and will require updating as the Project progresses, as further information becomes available and includes:

- Summary of information and overview of the proposed alignment construction methodology
- Summary of any soil sampling works undertaken
- Roles and responsibilities and contact details for the parties involved in the land disturbance activities, including the SQEP
- Identify potential and known hazards arising from contamination (if present)
- Identify specific management procedures developed for construction earthworks including:
 - o On-site soil management practices
 - o Off-site soil transport and disposal
 - o Erosion and sediment control
 - Management of dust and odour

- Contingency measures in the event of accidental/unexpected discovery (asbestos, unknown fill, odours, staining etc.)
- Post development controls (if required).

The contractor will need to manage its health and safety obligations with respect to risks relating to contaminated land. Measures to protect the health of workers, the public and the surrounding environment will need to be incorporated into any health and safety plan that relates to work on sites where potential or known hazards have been identified in the AEE.

11 Recommendations and Conclusions

Hazardous Building Materials

Hazardous materials such as asbestos and lead based paints may be encountered during structure removal in EB3C and soil excavation activities in EB3C/EB4L. Unexpected discoveries of hazardous materials during site works will be managed through a CLMP (required by the consent conditions) and a SQEP should be consulted.

242 and 386 Tī Rākau Drive

Both of these sites were identified as HAIL (service stations) within the EB3C package. Only limited previous environmental investigations pertaining to contamination conditions at either site was available. As soil and groundwater quality are unknown at either site, a conservative assumption is to consider it reasonably likely for contamination to be present at both sites.

Both 242 and 386 Tī Rākau Drive are located within areas of soil disturbance for the EB3C works and subsequently will be required to close, with fuel storage systems removed following the closures.

The NES-CS and AUP(OP) apply to both sites for the following activities:

- Disturbing soil
- Removal of a fuel storage system

As the permitted and controlled activity criteria cannot be met for both the NES-CS and AUP(OP), consent is being sought for a discretionary activity for both activities at both sites. Any potential effects to human health and the environment will be managed through a CLMP in conjunction with the CEMP and the ESCP (all required by the consent conditions).

550 Ti Irirangi Drive and 451 Tī Rākau Drive

550 Te Irirangi Drive, 21/451 Tī Rākau Drive, 22/451 Tī Rākau Drive and 24/451 Tī Rākau Drive have been identified as HAIL sites within the EB4L package. Environmental investigations have not been completed to date at these sites. As soil and groundwater quality are unknown, a conservative assumption is to consider it reasonably likely for contamination to be present.

Soil disturbance activities will not take place on these sites. However, topography suggests contamination from these sites is likely to be migrating to areas of proposed soil disturbance for the EB4L works and therefore, the NES-CS and AUP(OP) apply. As the permitted and controlled activity criteria cannot be met for both the NES-CS and AUP(OP), consent is being sought for a discretionary activity for the soil disturbance activities and any potential effects to human health and the environment managed through a CLMP in conjunction with the CEMP and the ESCP (all required by the consent conditions).

12 References

Ministry for the Environment, 1999. *Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand*. August 1999, revised October 2011.

Auckland Council, 2001. *Background Concentrations of Inorganic Elements in Soil from the Auckland Region*. October 2001.

Auckland Council, 2016. Auckland Unitary Plan Operative in part. November 2016; updated June 2023.

CCME (Canadian Council for Ministers of the Environment), 2002. *Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health.* Available at <u>https://ccme.ca/en/summary-table</u>.

Eastern Busway Alliance, 2023. *Eastern Busway EB3 Commercial and EB4 Link Road. Erosion and Sediment Control Plan.* 2023.

Eastern Busway Alliance, 2023a. *Eastern Busway EB3 Commercial. Construction Methodology*. Document Number: EB234-1-PL-RP-Z3-000002. June 2023.

Eastern Busway Alliance, 2023b. *Eastern Busway EB4 Link Road. Erosion and Sediment Control Plan.* Document. 2023.

Ministry for the Environment, 2011. *Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations*. October 2011.

Ministry for the Environment, 2011a. *Contaminated Land Management Guidelines No 2: Hierarchy and Application in New Zealand of Environmental Guideline Values.* October 2011.

Ministry for the Environment, 2023. Hazardous Activities and Industries List (HAIL). March 2023.

BRANZ (The Building Research Association of New Zealand), 2017. *New Zealand Guidelines for Assessing and Managing Asbestos in Soil*. November 2017.

Ministry for the Environment, 2021a. *Contaminated land management guidelines No 1: Reporting on contaminated sites in New Zealand (Revised 2021).* June 2021.

Ministry for the Environment, 2021b. *Contaminated land management guidelines No 5: Site Investigation and Analysis of Soils (Revised 2021).* June 2021.

National Water Quality Management Strategy, 2000. *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. October 2000, revised 2018.

Appendix A: Previous Environmental Investigations

07 December 2012

Our ref: 51/28564/16//AMETI PSI

Renata Smit Auckland Transport 31-33 Manukau Station Road Manukau

Dear Renata,

Phase 1 Preliminary Site Investigation for the Pakuranga Scheme Assessment of the Auckland Manukau Eastern Transport Initiative (AMETI) Alignment

1 Introduction

GHD Limited (GHD) was engaged by Auckland Transport to undertake a Phase 1 Preliminary Site Investigation (PSI) for the proposed Package 4 Scheme Assessment which is part of the Auckland Manukau Eastern Transport Initiative (AMETI) Project which runs between Pakuranga and Botany, Auckland. The following route comprises the Package 4 Scheme Assessment which is the subject of this assessment;

Segment 1 – Pakuranga Road between the eastern abutment of the Panmure Bridge and Ti Rakau Drive.

Segment 2 – Pakuranga Town Centre and its immediately surrounding corridors i.e. Pakuranga Road, between Ti Rakau Drive (including the Pakuranga Road intersection) and St Kentigerns signalised entrance; Ti Rakau Drive, between Pakuranga Road and Reeves Road (including the Reeves Road intersection); and Reeves Road, between William Roberts Road and Ti Rakau Drive.

Segment 3 – Ti Rakau Drive between Reeves Road and Gossamer Drive.

Segment 4 – Ti Rakau Drive between Gossamer Drive and Greenmount Drive.

Segment 5 – Ti Rakau Drive between Greenmount Drive and Botany Road.

It is understood that this Preliminary Site Investigation will support resource consent applications for the project, and feed into design considerations where necessary.

2 NES Requirements

The intention of this assessment is to support Auckland Transport in meeting the requirements of the *National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health* (NES) which took effect on January 1st 2012. As such, some land uses are classified as a HAIL activity (Hazardous Activities and Industries List) and there is potential that these land uses have occurred or are occurring along the alignment and will need to be investigated before construction begins. Disturbance of soil (at a scale above a prescribed threshold volume) at a HAIL site is a controlled activity, and as such requires consent. The NES covers a range of land use activities.

The NES also requires investigation of soil contaminants to assess potential risks to human health, and this requirement is triggered if the land is to be subdivided, developed or disturbed.

The intention of the Soil NES is to enable safe use of contaminated land to ensure that contaminated land is appropriately assessed prior to development, and if necessary, the land is made safe for human activity. The NES does not include criteria for environmental risk assessment. However, environmental risks should be considered in accordance with New Zealand guidelines.

The NES addresses land that is located adjacent to a HAIL site that may be impacted by contaminants from the HAIL site (HAIL category H).

It is understood that this PSI will support the Auckland Transport resource consent applications for the project and help meet their obligations under the NES for any HAIL sites that may be encountered along the Pakuranga Scheme Assessment of the AMETI alignment.

3 Hazardous Activities and Industries List

The HAIL is incorporated by reference into the NES. Under the NES, land is considered to be contaminated or potentially contaminated if an activity or industry on the HAIL 'is being undertaken, has been undertaken or is *more likely than not* to have been undertaken'¹. If current, and/or historic land uses are included on the HAIL and are identified on the land under investigation then the NES is triggered. Proposed activities also trigger the NES and include removal of underground fuel storage systems and associated soil, soil sampling, soil disturbance, subdivision of land and changing land use.

4 Objectives

The objective of this report was to:

• assess the likelihood² of the presence of soil and/or groundwater contamination resulting from historic and/or current land use³ along the route and/or adjacent to the route.

5 Scope of work

This assessment was undertaken in accordance with the Ministry for Environment Contaminated Land Management Guidelines: Reporting on Contaminated Sites in New Zealand (No. 1) 2011. This guideline is referenced in the National Environmental Standards (NES) for Assessing and Managing Contaminants in Soil to Protect Human Health.

A review of information available from the following sources was completed as part of this assessment:

- draft alignment plans as at October 2012 developed by GHD/Aurecon
- a review of publicly available historical aerial photos from 1940 to 2010
- a review of site photos
- Auckland Council contaminated sites and borehole register search
- review of readily available site investigation reports resulting from the site register search

¹ Ministry for the Environment. (2011). Draft user's guide: National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Wellington, New Zealand: Ministry for the Environment.

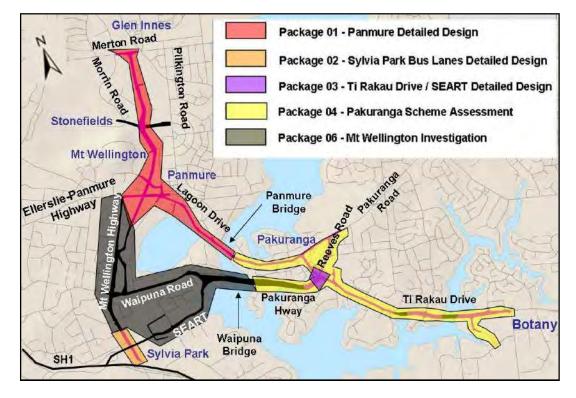
² Defined in the NES as: Likely is greater than 50% chance, and unlikely is less than 50% chance of contaminants being present.

³ Land that may be impacted by the migration of contaminants from adjacent sites is addressed in the NES (refer category H in the Hazardous Activities & Industries; HAIL List).

- an alignment walkover inspection conducted on the 26th September 2012
- review of readily available geology and hydrogeology information
- review of surrounding land uses to assess potential off site environmental impacts to the property or properties of interest
- identification of potential contaminants of concern
- publically available information on the environmental fate of contaminants
- identification of sensitive human and/or environmental receptors.

6 Project Description

The AMETI project aims to develop an integrated multi-modal transport system that supports population and economic growth in East Auckland around the areas of Glen Innes, Howick and Botany.


The project aims to provide more and improved transport choices to significantly enhance the safety, quality and attractiveness of passenger transport, walking and cycling while recognising that not all transport demand can be accommodated by these modes alone. The project includes providing Rapid Transport Network infrastructure or the ability to further develop this site at a future date. This will enable frequent and reliable bus services to improve access between the Eastern suburbs of Howick, Pakuranga and Botany and the Auckland City area, particularly the Auckland CBD.

GHD, in partnership with Aurecon, was commissioned by the then Manukau City Council (MCC) in February 2010 to undertake Package 04 (Pakuranga Scheme Assessment) of the AMETI project, which involves the preparation of a Scoping Report followed by a Scheme Assessment Report (SAR) for improvement works on Pakuranga Road, Ti Rakau Drive and Reeves Road including incorporation of the Rapid Transit Network (RTN)⁴.

The packages of work included in the AMETI programme are illustrated in Figure 1. The geographic extent of the current PSI is illustrated as Package 04; the Pakuranga Scheme Assessment.

⁴ Auckland Transport website http://www.aucklandtransport.govt.nz/improving-transport/ameti/phase-2-panmure-topakuranga/Pages/default.aspx

Figure 1: Package 04 Pakuranga Scheme Assessment shows the extent of the assessment

6.1 Alignment Setting

In general, from Panmure Bridge and Waipuna Bridge on the western end of the alignment to Ti Rakau Bridge the land use is predominantly residential. From Ti Rakau Bridge to Botany Town Centre the land use is mixed commercial/industrial. The area was formerly utilised as pastoral grazing land and urban development occurred from the mid-1950s. Appendix 2 shows the alignment in more detail.

7 Site Description

The following site description is based on readily available information on geology and hydrogeology, a review of aerial photos and the results of a contaminated site search via Auckland Council's Natural Resources and Specialist Input Unit.

7.1 Geology

Along the length of the project there are a number of geological units present⁵, the most prominent being rhyolitic pumiceous deposits of the Tauranga Group. This unit consist of light grey to orange-brown undifferentiated pumiceous mud, sand and gravel with black muddy peat and lignite. Near the Tamaki River is a lithic tuff deposit which consists of thin graded beds of grey mud-sand sized lithic fragments of comminuted country rock. The lithic fragments include basalt and basanite fragments, mudstone, sandstone, alluvium and micaceous sand. To the north of Ti Rikau Drive (near Udys Road) the near

⁵ Kermode, L.O. 1992: Geology of the Auckland Urban Area, Scale 1:50 000. Institute of Geological & Nuclear Sciences Geological Map 2. 1 sheet + 63p. Institute of Geological & Nuclear Sciences Ltd, Lower Hutt, New Zealand.

surface unit is Flysch of the East Coast Bays Formation which consists of well bedded, variably graded, grey to greenish grey muddy sandstone.

The large complex between Ti Rakau Drive and Pakuranga Road consists of engineered construction fill. The construction fill likely consists of re-compacted clay to gravel sized material and may include construction and demolition wastes. The industrial zone between Trugood Drive and Burswood Drive is a mottled patchwork of construction fill and basalt and basanite lavas derived from the Auckland Volcanic Field. The lavas are grey to dark grey, dense fine grained basalt or basanite. To the west of the intersection between Botany Road and Ti Rakau Drive, near Bard Place Reserve, there is a rhyolitic pumice deposit which consists of light grey massive to finely laminated pumice deposit. The fragments in this unit are mud to sand sized and include non-welded ignimbrite, tephra (ash fall volcanic deposits), and alluvial pumice deposits.

7.2 Hydrogeology

Given the proximity to coastal areas, regional groundwater flow is anticipated to be in a generally North, North East and North West direction towards the inner Waitemata Harbour. Localised groundwater flows will also be expected towards the Tamaki Basin, Tamaki River and the Pakuranga Creek. Shallow unconfined groundwater will tend to be influenced by local topography and proximate surface water bodies.

7.3 Review of aerial photos

Historical aerial photos were obtained from the Auckland Council GIS Viewer⁶. The aerial photo dates available and selected for the purposes of this assessment included:

• 1940, 1959, 1996, 2006, 2008 and 2010

These photos were selected to identify previous and current land uses that may indicate potential contamination of the area within which the road works will take place. The following tables provide a summary of observations from the historical aerial photos.

Because of the significant extent of the proposed alignment, a limited set of photographs has been summarised here initially as a general overview, with subsequent focus on specific sites.

⁶ http://maps.aucklandcouncil.govt.nz/AucklandCouncilViewer/

7.3.1 Alignment overview

Date	Observations
1940	There is limited aerial photography available for this date. The photograph available depicts the land use in Pakuranga to be predominantly farmland dedicated to what appears to be pastoral farming. The road bridge crosses the Tamaki Estuary at Kerswill Road. The Waipuna and the Panmure bridges are yet to be constructed. The blacked out area on the image indicates that aerial photography is not available for this area. Historically, land use in the Pakuranga area consisted of horticultural market gardening activities and as such it is considered likely that trace concentrations of pesticides such as DDT remain in the topsoil and therefore residual risk remains with regard soil disturbance in the area regarding these contaminants.

Date	Observations
1959	The aerial image shows that land use has intensified with residential developments in the Pakuranga area as well as along the Tamaki river closest to the bridge. The land use is still predominantly what appears to be pastoral farming. A racing track is located south of what is present day Pakuranga Town Centre. Panmure Bridge has now been constructed over the Tamaki Estuary. The blacked out area on the image indicates that aerial photography is not available for this area.

Date	Observations
1996	By 1996 farmland has given way to mainly mixed urban residential in the Pakuranga Area and to the early stages of Botany Industrial area and town centre. The area was not fully developed yet as evidenced by extensive land development in the Botany area although the industrial area appears well developed at this stage. An orchard appears to be located on what is modern day Greenmount Park. Greenmount landfill is also active as well. Close to Panmure bridge a greenhouse is in operation. Pakuranga substation occupies land off Ti Rakau Drive. The Bridge at Kerswill Road has now been removed and the Waipuna Bridge has been constructed south of Panmure Bridge.
	<image/>

Date	Observations
2006	The large area of exposed soil related to land development activities apparent in the Botany area in 1996 is now occupied by high density residential and industrial developments. Land use has intensified and there is less green open space apparent. Greenmount parks land use has changed since 1996 from apparent orchard to parkland.

Date	Observations	
2010	Urban development continues but there are no major changes apparent compared to 2006 and land use overall remains relatively static.	

7.3.2 Site specific overview

Date	Observations
2008	Glasshouses can be seen on the aerial photo at 24 Pakuranga Road (oval) and a potential small scale orchard in 39 Pakuranga Road (circle) which may present pesticide contamination issues, although both sites are separate from the alignment and therefore not considered likely to affect the project.

Date	Observations
2008	3 Kentigern Close is the site of a former Mobil branded service station (large circle). This site is currently vacant. A contaminated site investigation was undertaken in 2008 and the report was issued to the former Auckland Regional Council. A copy of the report was requested from Mobil but is yet to be received at the time of writing. A copy was also requested from Auckland Council under the Local Government Official Information and Meetings Act 1987 but the report was not available to read. Directly across the road a BP branded service station is currently in operation (small circle). These sites may present issues relating to hydrocarbon contamination during construction of the alignment.

Date	Observations
2010	New Zealand Dry Cleaners are located at Aylesbury Street, Pakuranga Town Centre. This business may present contamination issues to the proposed alignment with regards chlorinated solvents and potentially other volatile organic compounds (VOCs).
	<image/>

Date	Observations
2008	Pakuranga Automotive (large oval) and Pakuranga Panelbeaters (circle) are located at 16 and 12 Cortina Place respectively. Pakuranga Auto Transport are located at 16D Cortina Place (small circle). These businesses may present issues to the proposed alignment with regards hydrocarbon, solvents and trace element contamination as a result of activities relating to vehicle servicing and repair.

Date	Observations
2008	3 Reeves Road is currently occupied by a Gull branded service station and may present issues relating to hydrocarbon contamination to the construction phase of the alignment as a result of fuel storage facilities here.

Date	Observations				
2010	64B Ti Rakau Drive /11 Cortina Place is the site of a former Caltex branded service station. It is currently a vacant site. A site investigation ⁷ concluded that 7 soil samples exceeded the Oil Industry Guideline Tier 1 Criteria for Commercial / Industrial Land Use. These samples exceeded the criteria for subsurface maintenance/excavation worker human health pathways for selected hydrocarbon contaminants and could present a health risk to construction workers on the alignment.				

 ⁷ URS, O'Donohue, K., 2010, Caltex Pakuranga Service Station – Underground Petroleum Storage System Decommissioning, Residual Petroleum Hydrocarbon Assessment.

Date	Observations			
2010	242 Ti Rakau Drive is currently occupied by a Mobil branded service station and may present issues relating to hydrocarbon contamination to the construction phase of the alignment as a result of fuel storage facilities there. Enquiries with the Auckland Council have not identified any environmental investigation reports available for this site. The Pakuranga Creek flows close to the site.			

Date	Observations				
2008	Best Automotive Clinic is located at 245 Burswood Drive. This business may present issues to the proposed alignment with regards hydrocarbon, solvents and trace element contamination as a result of activities relating to vehicle servicing and repair.				
	<image/>				

Date	Observations			
2008	Sandvik Materials Technology is located at 269 Ti Rakau Drive. This business may present issues to the proposed alignment with regards hydrocarbon and trace element contamination as a result of materials processing.			
	<image/>			

Date	Observations				
2006	279 Ti Rakau Drive is the site of a former timber storage yard (rectangular outline). It is currently a buy and sell yard and may host residual contamination relating to timber treatments. Across the road at 284 Ti Rakau Drive a Z branded service station is currently in operation (oval outline) and may also present issues during construction of the alignment relating to hydrocarbon contamination.				

Date	Observations			
2008	Forging Ahead is located at 293 Ti Rakau Drive. This business may present issues to the proposed alignment with regards hydrocarbon and trace element contamination resulting from foundry operations.			

Date	Observations			
2008	333 Ti Rakau Drive is occupied by the Blue n Green Dry Cleaners (large oval) whilst next door on the corner of Harris Road and Ti Rakau Drive is a BP branded service station (circle). Behind BP is Jireh Auto Tyres at 179 Harris Road (small oval) dealing in automotive repairs. The service station may present issues to the construction of the alignment relating to hydrocarbon contamination and the dry cleaners may present issues related to chlorinated solvent and VOC contamination. The auto workshop may also have some issues with solvents, hydrocarbons as well as trace elements.			
	<image/>			

Date	Observations				
2010	380 Ti Rakau Drive is occupied by the Howick and Eastern Bus Company whilst next door at 384 is a Gull branded service station. Both of these sites may present issues to the construction of the alignment relating to hydrocarbon contamination as a result of fuel storage facilities at both sites. A tributary of the Pakuranga Creek flows at the back of both properties and could be considered a sensitive receptor. According to council borehole records Chevron have installed a borehole at 380 Ti Rakau Drive for monitoring purposes. A site investigation report was not available from Auckland Council. It is understood that Chevron previously operated a Caltex branded service station at 384 Ti Rakau Drive.				

Date	Observations				
2010	550 Te Iririangi Drive is currently occupied by a Z branded service station and may present issues relating to hydrocarbon contamination during the construction phase of the alignment along Te Koha Road as a result of fuel storage facilities here.				
	<image/>				

8 Council Records

A site contamination enquiry was completed for the road alignment by seeking records from Auckland Council. The complete results of this search are included as Appendix A of this report. A contaminated site discharge was identified at 11 Cortina Place / 64B Ti Rakau Drive (Caltex branded service station). The Council's register indicates that a tank pull report was received by the then Auckland Regional Council when the Underground Petroleum Storage System (UPSS) was removed from the site in May 2010. As a result, a discharge consent was required for the site. Another contaminated site discharge was identified at 3 Kentigern Close (Mobil branded service station) and the register indicates that an Environmental Site Assessment report was received by the council for that site.

The site reports for these properties have been requested from Auckland Council. The site investigation report was received for the Caltex branded service station but not the Mobil branded service station. The report⁸ for 11 Cortina Place / 64B Ti Rakau Drive detailed 9 soil samples that exceeded the Oil Industry Guideline Tier 1 Criteria for Commercial / Industrial Land Use. Seven soil samples exceeded the criteria for subsurface maintenance/excavation worker human health pathways for selected contaminants. This will need to be taken into account during the alignment works regarding the health and safety of construction workers.

Auckland Council recommended that Mobil should be contacted to gain access to the site report for the Mobil branded service station. Mobil was contacted by phone⁹ and they recommended an email request be submitted but the site report is yet to be received. Following that a request for more information was submitted to the Auckland Council Local Government Official Information and Meeting Act (LGOIMA) process. Auckland Council responded that they were withholding the Environmental Site Assessment Report provided by Mobil under section 7(2)(c)(i) of the LGOMIA as the report was supplied under an obligation of confidence and making it available would "be likely to prejudice the supply of similar information, or information from the same source, and it is in the public interest that such information should continue to be supplied". Given that both Mobil and Auckland Council have been contacted for more information on the site and that this information is not forthcoming any construction activities on site should proceed on the assumption of contamination existing onsite.

The Environmental Site Assessment report for the Mobil site should be read in conjunction with this assessment to better understand the risks associated with the former service station at 3 Kentigern Close regarding the health and safety of construction workers.

A borehole register search conducted by the Auckland Council Natural Resources and Specialist Input Unit revealed 3 cases of borehole installation for the following contaminated and potentially contaminated sites.

⁸ URS, O'Donohue, K., 2010, Caltex Pakuranga Service Station – Underground Petroleum Storage System Decommissioning, Residual Petroleum Hydrocarbon Assessment.

⁹ Personal Communication with Erin Richards of Exxon Mobil on 16th October 2012

Site Name	Address	Purpose
Chevron	380 Ti Rakau Drive, Pakuranga	The construction of a bore for monitoring purposes.
Chevron	11 Cortina Place / 64B Ti Rakau Drive, Pakuranga.	The construction of 4 bores for contaminated site investigations.
T.M.K Packers Ltd.	257 Ti Rakau Drive, Pakuranga	The construction of 4 bores for environmental monitoring.

9 Potential Locations of Interest

To summarise the site specific review the following sites were noted as potential contaminated sites that may present contamination issues once work commences on the alignment.

Site Name	Activity	HAIL Activity	Potential Contaminant of Concern based upon identified HAIL activity
3 Kentigern Close	BP branded service station	Vehicle refuelling, service and repair	Total petroleum hydrocarbons (TPH), Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)
Aylesbury Street, Pakuranga Town Centre	New Zealand Dry Cleaners	Chemical manufacture, application and bulk storage	Chlorinated Solvents, VOCs
12 Cortina Place	Pakuranga Panelbeaters	Vehicle refuelling, service and repair	Chlorinated solvents, TPH, BTEX, Trace Elements
16 Cortina Place	Pakuranga Automotive	Vehicle refuelling, service and repair	Chlorinated solvents, TPH, BTEX, Trace Elements
16D Cortina Place	Pakuranga Auto Transport	Vehicle refuelling, service and repair	Chlorinated solvents, TPH, BTEX, Trace Elements
3 Reeves Road	Gull branded service station	Vehicle refuelling, service and repair	TPH, BTEX
242 Ti Rakau Drive	Mobil branded service station	Vehicle refuelling, service and repair	TPH, BTEX

245 Burswood Drive	Best Automotive Clinic	Vehicle refuelling, service and repair	Chlorinated solvents, TPH, BTEX, Trace Elements
269 Ti Rakau Drive	Sandvik Materials Technology	Metal extraction, refining and reprocessing, storage and use	TPH, BTEX, Trace Elements
279 Ti Rakau Drive	Former Timber Storage yard.	Chemical manufacture, application and bulk storage	Trace Elements, PCP, PAH, Pesticides
Corner Ti Rakau Drive and Burswood Drive	Z branded service station	Vehicle refuelling, service and repair	TPH, BTEX
179D Harris Road	Jireh Auto Tyres	Vehicle refuelling, service and repair	Chlorinated solvents, TPH, BTEX, Trace Elements
Corner Ti Rakau Drive and Harris Road	BP branded service station	Vehicle refuelling, service and repair	TPH, BTEX
293 Ti Rakau Drive	Forging Ahead (Foundry)	Metal extraction, refining and reprocessing, storage and use	TPH, BTEX, Trace Elements
333 Ti Rakau Drive	Blue n Green Dry Cleaners	Chemical manufacture, application and bulk storage	Chlorinated Solvents, VOCs
380 Ti Rakau Drive	Howick and Eastern Bus Depot	Vehicle refuelling, service and repair	TPH, BTEX
386 Ti Rakau Drive	Gull branded service station	Vehicle refuelling, service and repair	TPH, BTEX
550 Te Irirangi Drive	Z branded service station	Vehicle refuelling, service and repair	ТРН, ВТЕХ

10 Potential Contaminants of Concern

The table below outlines the potential contaminants of concern that may be present in the area surrounding the proposed road upgrade. The identified contaminants are based on past and current land use.

Soil Contaminants	Potential Source
Inorganic elements	Arsenic, copper and chromium are commonly used timber treatment chemicals used for fence posts, and other timbers used in the outdoor environment. Trace elements relating to foundry operations.
Total petroleum hydrocarbons (TPH), Benzene, toluene, ethylbenzene, xylenes (BTEX)	Petrol stations and associated underground storage tanks and fuel system.
VOCs and Chlorinated Solvents	Dry Cleaning Services, automotive workshops.
Pentachlorophenol (PCP)	Wood preservative (anti sap stain) used in the treatment of timber.

11 Sensitive Receptors

A site walkover and aerial photo review identified no sensitive receptors in close proximity to the potentially contaminated sites along the AMETI alignment with the exception of the tributary of the Pakuranga Creek flowing at the back of the Gull Service Station at 386 Ti Rakau Drive. The alignment is located in an urban landscape and as such there is limited access to exposed soil, although once the alignment construction begins the amount of exposed soil will increase. The land use is a mix of commercial, residential and industrial. There are nursing homes, schools, gardens, streams and parks in the vicinity of the alignment but none of these are in close proximity to the potential contaminated sites listed.

12 Qualitative Assessment of Risk

The following assessment of potential risk is qualitative only and does not represent a detailed quantitative assessment of risk to human health or the environment. Rather, it presents a selection of the primary contaminants of concern that may be encountered along the alignment.

12.1 Organochlorines

Pentachlorophenol (PCP) is an organochlorine preservative used in the treatment of timber and as such may be present at the former timber storage yard and as such may pose a risk during the construction of the alignment. Exposure to PCP can cause harmful effects on the liver and kidneys and may cause cancer¹⁰.

¹⁰ http://water.epa.gov/drink/contaminants/basicinformation/pentachlorophenol.cfm

Chlorinated solvents are used in a range of commercial and industrial purposes to include mixing and thinning solutions. Their chlorine chemical structure allows them to dissolve organic material and some compounds are used as a raw material in the production of other chemicals. There is a range of short term and long term exposure effects including skin problems, and damage to the nervous system, kidneys and liver. Some chlorinated solvents are known to cause cancer¹¹.

12.2 Trace Elements

Generally, trace elements are immobile under normal soil (non-acidic or alkaline) conditions. These trace elements tend to sorb strongly to the (inorganic) soil particles; hence the propensity for leaching is very limited for most soil conditions and impacted topsoil can be mobilised as dust or sediment if the soil is exposed.

Copper chrome arsenate (CCA) contamination (if any) of near surface soil from the storage of treated timber is likely to be limited to that of the storage yard. The highly localised nature of the contamination restricts the risk posed to either human health or the environment.

Copper adsorbs strongly to most soil types. Along with other trace elements, the mobility of copper represents a low human health risk. Copper can pose a threat to sediment and surface water quality under certain conditions if sediment control measures are not sufficient to contain impacted soil that is exposed.

12.3 Petroleum Hydrocarbons

Petroleum hydrocarbons can exist in the soil environment as a separate phase liquid; dissolved in groundwater or the soil solution; and/or vapour¹². Physical (including groundwater processes), chemical and biological processes affect the fate and migratory rates of these contaminants. The key influences include sorption (adsorption and absorption), diffusion (dilution and dispersion), volatilisation, chemical and biological degradation which are ultimately determined by the characteristics of the soil.

The low molecular weight fraction of petrol volatilises rapidly when exposed to the atmosphere. These compounds have a reported biodegradable half-life of five years in groundwater¹². In the soil environment the half-life can be as short as 1-4 weeks¹³.

Petroleum hydrocarbons can be toxic to the environment and human health. The volatile compounds have an adverse effect on the central nervous system of animals and benzene has been identified as a human carcinogen¹². Some higher molecular weight compounds present in diesel and fuel oils (PAHs) are also carcinogenic.

Also associated with the accumulation of petroleum hydrocarbon vapour and liquid is a fire and/or explosion risk. This requires oxygen and the introduction of an ignition source¹².

¹¹ http://www.worker-health.org/chlorinatedsolvents.html

¹² Ministry for the Environment. (1999). Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011).

¹³ Ahrens, M. (2008). Literature review of organic chemicals of emerging environmental concern in use in Auckland (Prepared by NIWA for Auckland Regional Council. Auckland Regional Council Technical Report 2008/028).

13 Conclusions

Based upon the review of available information, the alignment walk over inspection and qualitative risk assessments undertaken as part of this Preliminary Site Investigation, the following conclusions can been drawn:

- Adjacent to the road alignment up to 20 sites with land uses included on the HAIL were identified. Given that the surface soil will be disturbed along the alignment corridor through significant soil disturbance activity the regulations of the NES apply on the basis of HAIL category H adjacent sites. Category H is defined as "Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment."
- The likelihood that the HAIL activities identified adjacent to the proposed alignment the proposed alignment may impact the alignment varies for each site depending on the nature of the contaminants and therefore the likely migration mechanisms. The relative likelihood of contaminant migration to the alignment from each site is summarised in the table below;

Site Name	Activity	Contamination Risk Rating	Potential Contaminant of Concern based upon identified HAIL activity
11 Cortina Place / 64B Ti Rakau Drive	Former Caltex branded service station, now a vacant site	High Risk	Total petroleum hydrocarbons (TPH), Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)
24 Pakuranga Road	Market Gardening	Low Risk	Pesticides, Inorganic Elements
39 Pakuranga Road	Possible Orchard	Low Risk	Pesticides, Inorganic Elements
3 Kentigern Close	BP branded service station	Medium to High Risk (review risk after review of Mobil environmental site assessment report.)	TPH, BTEX
Aylesbury Street, Pakuranga Town Centre	New Zealand Dry Cleaners	Medium Risk	Chlorinated Solvents, VOCs
12 Cortina Place	Pakuranga Panelbeaters	Medium Risk	Chlorinated solvents, TPH, BTEX, Trace Elements
16 Cortina Place	Pakuranga Automotive	Medium Risk	Chlorinated solvents, TPH, BTEX, Trace Elements

16D Cortina Place	Pakuranga Auto Transport	Medium Risk	Chlorinated solvents, TPH, BTEX, Trace Elements
3 Reeves Road	Gull branded service station	Medium Risk	TPH, BTEX
242 Ti Rakau Drive	Mobil branded service station	Medium Risk	TPH, BTEX
245 Burswood Drive	Best Automotive Clinic	Medium Risk	Chlorinated solvents, TPH, BTEX, Trace Elements
269 Ti Rakau Drive	Sandvik Materials Technology	Medium Risk	TPH, BTEX, Trace Elements
279 Ti Rakau Drive	Former Timber Storage yard.	Low to Medium Risk	Trace Elements, PCP, PAH, Pesticides
Corner Ti Rakau Drive and Burswood Drive	Z branded service station	Medium Risk	TPH, BTEX
179D Harris Road	Jireh Auto Tyres	Medium Risk	Chlorinated solvents, TPH, BTEX, Trace Elements
Corner Ti Rakau Drive and Harris Road	BP branded service station	Medium Risk	TPH, BTEX
293 Ti Rakau Drive	Forging Ahead (Foundry)	Medium Risk	TPH, BTEX, Trace Elements
333 Ti Rakau Drive	Blue n Green Dry Cleaners	Medium Risk	Chlorinated Solvents, VOCs
380 Ti Rakau Drive	Howick and Eastern Bus Depot	Medium Risk	TPH, BTEX
386 Ti Rakau Drive	Gull branded service station	Medium Risk	TPH, BTEX
550 Te Irirangi Drive	Z branded service station	Medium Risk	TPH, BTEX

14 Recommendations

We recommend that Auckland Transport considers the following in order to minimise risks associated with contaminated land along the alignment of the proposed road works;

Obtain environmental site investigations reports from Auckland Council

- Engage with the Auckland Council contaminated site officers to present this report and the planned strategy to assess potential contamination from adjacent sites along the alignment.
- Undertake intrusive soil investigations to assess potential contaminants along the alignment, at locations where the adjacent land use has been identified as having current or historic HAIL activities and where the likelihood of contamination has been assessed as medium to high.

15 Limitations

This Preliminary Site Investigation refers to the proposed AMETI Project as described in Section 4 of this report and:

- 1. has been prepared by GHD Limited ("GHD") for Auckland Transport;
- 2. may only be used and relied on by Auckland Transport;

3. must not be copied to, used by, or relied on by any person other than Auckland Transport without the prior written consent of GHD and subject always to the next paragraph; and

4. GHD and its servants, employees and officers otherwise expressly disclaim responsibility to any person other than Auckland Transport arising from or in connection with this Report.

To the maximum extent permitted by law, all implied warranties and conditions in relation to the services provided by GHD and the Report are excluded unless they are expressly stated to apply in this Report.

The services undertaken by GHD in connection with preparing this Report:

- were limited to those specifically detailed in section 3;
- were undertaken in accordance with current professional practice and by reference to relevant environmental regulatory authority and industry standards, guidelines and assessment criteria in existence as at the date of this Report; and
- did not include the collection of samples for the purpose of laboratory analysis or verification of information obtained from the site history review.

The opinions, conclusions and any recommendations in this Report are based on assumptions made by GHD when undertaking the services mentioned above and preparing the Report ("Assumptions"), as specified throughout this Report.

GHD expressly disclaims responsibility for any error in, or omission from, this Report arising from or in connection with any of the Assumptions being incorrect.

Subject to the paragraphs in this section of the Report, the opinions, conclusions and any recommendations in this Report are based on conditions encountered and information reviewed at the time of preparation of this Report and are relevant until such times as the site conditions and/or relevant legislations changes, at which time, GHD expressly disclaims responsibility for any error in, or omission from, this Report arising from or in connection with those opinions, conclusions and any recommendations.

GHD has prepared this Report on the basis of information provided by Auckland Transport (and others who provided information to GHD including Government authorities, which GHD has not independently verified or checked ("Unverified Information") beyond the agreed scope of work).

GHD expressly disclaims responsibility in connection with the Unverified Information, including (but not limited to) errors in, or omissions from, the Report, which were caused or contributed to by errors in, or omissions from, the Unverified Information.

Inspections undertaken in respect of this Report were limited to visual inspections only and were constrained by the particular site conditions, such as locations of buildings, services or vegetation.

The opinions, conclusions and any recommendations in this Report are based on information obtained from readily available information sources.

Except as otherwise expressly stated in this Report, GHD makes no warranty, statement or representation of any kind concerning the suitability of the site for any purpose or the permissibility of any use, development or re-development of the site.

These Disclaimers should be read in conjunction with the entire Report and no excerpts are taken to be representative of the findings of this Report.

16 Third Party Reliance

The work created in this document is the property of GHD Ltd and any unauthorised use of it in any form whatsoever is prohibited. The document is intended for the use of Auckland Transport. It has been prepared in accordance with the Terms of Engagement for the commission and on the basis of specific instructions and information provided by the client for exclusive use by the client for its particular purpose. The contents and conclusions of this document may therefore be inappropriate for any third party in the context of that third party's particular purposes and circumstances. Any third party should obtain its own independent information or advice and no responsibility is accepted and no duty of care is assumed by GHD Ltd to any third party who may use or rely on the whole or any part of the content of this document.

Yours sincerely GHD Limited

Sean Holand

Sean Toland Senior Geo-Environmental Scientist 09 3708204

Dr. Murray Wallis National Planning and Environment BGM 09 3708206

Appendix A

Auckland Council Site Contamination Search

25 September 2012

GHD Level 16 ASB Bank Centre 135 Albert Street Auckland

Attention: Sean Toland

Dear Sean

Site Contamination Enquiry - Various properties along AMETI route.

This letter is in response to your enquiry requesting available site contamination information for the sites as indicated in your email of 25 September 2012. The following details are based on information available from the former Auckland Regional Council records system and information currently held by the Auckland Council Natural Resources and Specialist Input Unit. The details provided below exclude any property information held by the former district/city councils.

The tables below outline the reference for the site files and pollution incident files available for the subject site:

File Referen	nce	T096-03		
File Name	le Name Cato		Catchment file	
Site Occupier Name		2C Amera Place		
Pollution	Date	22/05/08	Comment	Incident no. 08/2053. Vomit smell,
Pollution	Date	09/05/11	Comment	Incident no. 11/0598. Waste being tipped into stormwater drain continuously.
Pollution	Date	03/11/03		Incident no. 03/1344. Restaurant tipping fat to stormwater.

File Reference	6-03-2874			
File Name	2G Amera Place			
Site Occupier Name	Dynamo Group Ltd			
Pollution Date	14/01/03 Comment Concrete in drain.			
Pollution Date	02/09/02 Comment Concrete in drain.			

File Reference	e	P270-04-0	P270-04-03		
File Name	1	Catchmen	t file		
Site address		12 Amera	Place		
Pollution D	ate	06/06/03	Comment	Incident no. 03/0628. Discharge from small building site	
Pollution Di	ate	03/11/03	Comment	Incident no. 03/1344. Restaurant tipping fat to stormwater.	

File Reference	P270-04-01-03		
File Name	Catchment file		
Site address	183 Harris Rd - BP Express Ti Rakau		
Pollution Date	12/04/04 Comment Incident no. 04/0627. Petrol spill on forecourt.		
Site Visit Date	15/01/01 Comment Site audit.		

File Reference	9	T096- 03		
File Name		Catchment File		
Site Occupier	Name	166B Hari	ris Road	
Pollution Da	ate	21/03/11	Comment	Incident no. 11/0689. Carwashing soapy liquid to stormwater.
Site Visit Da	ate	1	Comment	

File Refere	ence	T096-03 Catchment File		
File Name				
Site Occup	pier Name	Corner Harris Road & TiRakau Drive		
Pollution	Date	01/09/09	Comment	Incident no. 09/2608. Fire page fertilizers to road and stormwater from crash.
Site Visit	Date		Comment	

File Reference	T096-03			
File Name	Catchment file			
Site Address	13 Millen Ave			
Pollution Date	23/03/12 Comment Incident no. 12/1671. Sewage overflow.			

File Reference	T096-03		
File Name	Catchment file		
Site Address	Pakuranga Shopping Centre		
Pollution Date	23/03/11 Comment Incident no. 11/0958. Strong sewage smell coming from carpark.		
Site Address	34 Pakuranga Road		
Pollution Date	11/11/08 Comment Burning.		
Site Address	130 Pakuranga Road		
Pollution Date	19/06/12 Comment Incident no. 12/2449. Dye in stormwater.		
Pollution Date	20/04/12 Comment Incident no. 12/1768. Oil slick coming down the Tamaki river behind St Kentigern College, Pakuranga		
Site Address	140 Pakuranga Road		
Pollution Date	27/12/10 Comment Incident no. 11/0011. Brown slick in the Tamaki River		
Site Address	165 Pakuranga Highway (BP Town Centre)		
Pollution Date	23/07/05 Comment Incident no. 05/1898. Hydrocarbon spill – 10-200 litres.		
Pollution Date	04/10/03 Comment Incident no. 03/1327. Hydrocarbon spill – less than 10 litres.		
Site Address	172 Pakuranga Road		
Pollution Date	28/11/10 Comment Incident no. 11/0330. Burning		
Site Address	Pakuranga Road		
Pollution Date	14/11/03 Comment Incident no. 03/1088. Vehicle washing to stormwater.		

File Reference	6-03-1340		
File Name	2 Pakuranga Rd, Pakuranga		
Site Occupier Name	Panmure Bridge Marina Ltd		
Pollution Date	22/06/01 Commer	t Washing to stornwater.	
Pollution Date	07/08/97 Commer	t Spill when spray painting.	
Pollution Date	31/07/97 Commer	t Boat sanded on slipway.	

File Reference		P270-04-17		
File Name		22 Pakuranga Road		
Site Occupier Name		Foley Concrete Ltd		
Pollution	Date	12/10/05	Comment	Concrete waste to stormwater.
Pollution	Date	18/02/03	Comment	Concrete waste to stormwater.

File Reference	6-03-0143		
File Name	102 Pakuranga Road		
Site Address	Mobil Service Station		
Pollution Date	29/07/94 Comment Engines cleaned to yard and waste to stormwater.		
File Reference	T096-03		
File Name	Catchment file		
Site Occupier Name	Corrner Pakuranga Highway and Ti Rakau Drive		
Pollution Date	01/08/06 Comment Possible battery acid on petrol station forecourt		
File Reference	P270-04-03		
File Name	Catchment file		
Site Address	3 Reeves Road		
Site Visit Date	31/07/94 Comment Site audit.		
File Reference	6-03-1754		
File Name	3 Reeves Road		
Site Occupier Name	Gull Petroleum		
Pollution Date	17/01/01 Comment Petrol on forecourt washed off with water.		
File Reference	6-03-2954		
File Name	7 Reeves Road		
Site Occupier Name	Great City Restaurant		
Pollution Date	03/10/02 Comment Leakage from waste bin.		
Pollution Date	10/09/02 Comment Leakage from waste bin (leaking blood).		
File Reference	T096-03		
File Name	Catchment file		
Site Address	7 Reeves Road		
Pollution Date	14/02/12 Comment Incident no. 12/0816. White / grey smoke coming from restaurant.		
File Reference	T096-03		
File Name	Catchment file		
Site Address	Corner Reeves Road, and TiRakau Road intersection.		
Pollution Date	23/03/11 Comment Incident no. 11/1035. Major sewage spill.		
File Reference	T096-03		
File Name	Catchment file		
Site Occupier Name	Corrner Ti Rakau Drive and Te Irirangi		
Pollution Date	07/07/05 Comment Incident no 05/1795. Hydraulic-oil spill to stormwater cesspit.		
File Reference	T096-03		
File Name	Catchment file		
Site Occupier Name	Corrner Ti Rakau Drive and Waipuna Highway		
Pollution Date	31/01/92 Comment Incident no. 91/0127. Drum of hydrochloric acid spilled on road.		
	indicate the other Protect Diant of Hydrochione acid spined on road.		
File Reference	T096-03		
File Name	Catchment file		
Site Address	550 Te Irirangi Drive		
Pollution Date	13/05/07 Comment Incident no. 07/1916. Petrol spill.		
Pollution Date	21/07/05 Comment Incident no. 05/1890. Diesel spill – approx 180 litres,		

Pollution Da	ate 03/03/05	Comment	Incident no. 05/0795. Mixed fuel being drained to forecourt. 10 200 litres.
Site visit Da	ate 20/01/01	Comment	Site audit.
Pollution Da	ate 17/06/08	Comment	Incident no. 08/2296. Oil spill to stormwater.
File Reference	A224-06		
File Name	Catchmer	t file (Air Qualit	(Y
Site Address	164 TiRal	au Drive	
Pollution Da	ate 18/11/08	Comment	Incident no. 08/3750. Burning.
Pollution Da	ite 21/01/08	Comment	Incident no. 08/0328. Burning.
Site Address	214 TiRal	au Drive	
Pollution Da	ate 09/04/07	Comment	Incident no. 07/2040. Burning.
Site Address	451 TiRal	au Drive	
Pollution Da	nte 18/06/08	Comment	Incident no. 08/2331. Odour from Pizza Hutt.
Site Address	TiRakau	Drive	
Pollution Da	ate 22/12/09	Comment	Incident no. 10/0043. Burning.
File Reference	A256-03		
File Name	Catchmer	t file	
Site Address	Ti Rakau	Dr (TJ's Carwa	ash)
Pollution Da	ite 14/01/08	Comment	Incident no. 07/0582. Overspray from car wash.
Site Visit Da	ite	Comment	
File Reference		<u> </u>	
File Name		t file (Air Qualit	y)
Site Address	53 TiRaka	the second se	
Pollution Da		Comment	Incident no. 11/4523. Sediment to stormwater.
Site Address	81 TiRaka		
Pollution Da	No. of Concession, Name	Comment	Incident no. 08/2170. Concrete cutting.
Site Address	97 TiRaka	Management of the local division of the loca	
Poilution Da		Comment	Incident no. 09/3355. Milky coloured stream.
Site Address	126 TiRal		
Pollution Da		Comment	Incident no. 05/1980. Concrete washing to stormwater.
Site Address	130 TiRa		Desiret de atacemunates
Polition Da		Comment	Paint to stormwater.
Site Address	164 TiRai		
Pollution Da	ite 13/01/08	Comment	Burning incident.
Site Address		Comment	Incident no. 10/1678. Oil washing to stormwater.
Pollution Da	1	Comment	Incident no. 10/1822. Oil spill on driveway.
	te 29/03/10 242 TiRat	Carlstone (1997)	modent no. 10/1202, On Spin on driveway.
Site Address		Comment	Site audit.
		Comment	Site audit.
	249 TiRal	L SPACE AND AND	
Site Address		Comment	Incident no. 09/3469. Rotten egg odour.
Pollution Da		Comment	Sewage odour.
Poliction Da	1	Comment	Incident no. 10/2214. Sewage odour.
Pollution Da		Comment	Incident no. 10/1456. Strong odour.
Site Address	263 TiRal		modelit no. To 1400, or ong odou.
Site Audress	203 117(8)	ad Dilve	

Site Address	290 TiRakau Drive		50m	
Pollution Date	27/05/09	Comment Incident no. 09/1878. Odour from a fish shop.		
Site Address	298 TiRak	298 TiRakau Drive		
Pollution Date	13/03/06	Comment	Incident no.06/0794. Oil spill from restaurant.	
Site Address	320 TiRak	au Drive		
Pollution Date	21/07/12	Comment	Incident no. 12/2755. Concrete dust in channel and gutter.	
Pollution Date	28/05/09	Comment	Incident no. Clay washed to creek (from Urban Worx Limited),	
Site Address	380 TiRak	au Drive		
Site visit Date	13/01/02	Comment	Site audit.	
Site Address	396 TiRak	au Drive (Sod	a Blast Auckland)	
Pollution Date	14/02/08	Comment	Incident no. 08/0275. Waterblasting of soda to stormwater.	
Site Address	451 TiRak	451 TiRakau Drive		
Pollution Date	22/06/11	Comment	Incident no. 11/2871. Paint discharged to stormwater.	
Pollution Date	28/01/10	Comment	Incident no. 10/0597. Waste cooking spill.	
Pollution Date	04/04/08	Comment	Incident no. 08/1463. Waste cooking spill.	
Pollution Date	10/10/11.	Comment	Incident no. 11/2871. Paint discharge to stormwater.	
Site Address 500 TiRakau Drive				
Pollution Date	15/06/12	Comment	Incident no. 12/2451. Fire at bowling alley.	
Site Address	e Address TiRakau Drive			
Pollution Date	14/11/09	Comment	Incident no. 09/3542. Odour complaint.	
Pollution Date	2/1/2007	Comment	Incident no. 07/3676. Petrol to stormwater.	
Pollution Date	23/02/07	Comment	Incident no. 07/0877. Car washing to stormwater.	
Pollution Date	13/07/04	Comment	Incident no. 04/0935. TJ's carwash discharge to stormwater.	
Pollution Date	27/11/01	Comment	Incident no. 01/0683. Washing paint brushes to stormwater.	
Pollution Date	30/11/93	Comment	Incident no. 93/0754. Hydrocarbon spill from BP.	
Site Address	Ti Rakau E	Bridge-Mangro	ove Swamp	
Pollution Date	23/01/96	Comment	Incident no. 96/0144. 2 X 44 Gallon Drums Going Down Stream, Planks Of Wood & Oil Slick, Ending Up In Swamp Area	

File Reference	7-45-3322
File Name	53 TiRakau Drive
Pollution Date	07/12/11 Comment Sediment to stormwater.

File Reference	6-03-1527		
File Name	249 TiRakau Drive		
Site Occupier Name	Cascade Hire Centre Ltd		
Site visit Date	04/08/94 Comment Site audit.		

File Reference	P240-04-04		
Site Address	279 TiRakau Drive - Total Hire Limited		
Pollution Date	19/01/02 Comment Incident no. 02/1104. Waste oil overflowing out of drums.		
Site Address	TiRakau Drive		
Pollution Date	Comment Incident no.		

File Reference	6-03-2465	
File Name	298 TiRakau Drive	
Site Occupier Name	Lucky House Restaurant	
Pollution Date	18/05/01 Comment Washing dishes to stormwater.	

File Reference	6-03-2724		
File Name	318D TiRakau Drive		
Site Occupier Name	Redox Chemicals NZ		
Pollution Date	18/01/02 Comment	Chemical spill to road.	
File Reference	6-03-2157		
File Name	330 TiRakau Drive		
Site Occupier Name	Howick & Eastern Buses Lte	d	
Pollution Date	14/10/99 Comment	Site visit.	
File Reference	6-03-2928		
File Name	347 TiRakau Drive		
Site Occupier Name	TJ's Carwash		
Pollution Date	12/02/07 Comment	Carwash to stormwater.	
Pollution Date	04/07/04 Comment	Carwash to stormwater.	
Pollution Date	15/09/02 Comment	Carwash to stormwater.	
File Reference	6-03-2157		
File Name	380 TiRakau Drive		
Site Occupier Name	Howick & Eastern Buses		
Pollution Date	26/08/12 Comment	Small oil spill.	
Site Visit Date	14/10/99 Comment	Site audit.	
File Reference	6-03-2294		
File Name	TiRakau Drive		
Site Occupier Name	Plumbing World		
Pollution Date	19/10/07 Comment	Black chemical substance seeping from ground,	
File Reference	6-03-0141		
File Name	92-98 Harris Road (but inc	ident was on TiRakau Road)	
Pollution Date		Incident no. 95/0014. Chemical Spill At Aspac. Watertech Trucks by Ponds on Ti Rakau Drive	

The general catchment file and site visit file for the catchment (6-03 and 6-03-SV respectively) were not searched. These files contain pollution incidents where the source of pollution was not traced to a particular site, site visits where no follow-up correspondence was required and some information from archived files.

If the above sites are coastal or beside a river, it is possible that historic, unconsented reclamation may have occurred. The Auckland Council, Natural Resources and Specialist Input, Coastal Team may be able to provide further information.

The records reviewed as part of this Site Contamination Enquiry search do not identify individual horticultural sites in the region. However, there is a possibility that horticultural activities may have occurred at the sites. The local Auckland Council customer service centre, specific to the area of the site may be able to provide relevant information where former horticultural sites have been mapped.

If you are concerned that a historic land use (such as filling) may have caused the underlying soils to become contaminated, it is recommended that you obtain an independent environmental assessment of the sites. Staff from the Auckland Council Earthworks and Contaminated Land Team can provide advice on the results of any evaluation in terms of site remediation and/or potential consent requirements.

The former Auckland Regional Council and current Natural Resources and Specialist Input Unit databases were searched for records of landfill, bore, air discharge, industrial and trade process consents, contaminated site discharge consents, and environmental assessments within sites which are approximately 50 metres of either side of the road reserve. Relevant details of the identified consents are appended to this letter (Attachment A).

The details provided are in accordance with the obligation to make information publicly available upon request. While the Auckland Council has carried out the search using its best practical endeavours, it does not warrant its completeness or accuracy and disclaims any responsibility or liability in respect of the information. If you or any other person wishes to act or to rely on this information, or make any financial commitment based upon it, it is recommended that you seek appropriate technical and/or professional advice.

In addition, it is recommended that you contact the local customer service centre of the Auckland Council, specific to the site being investigated: Ground Floor, Kotuku House, 4 Osterley Way, Manukau Central as they also may hold files with relevant information.


I trust that this answers your query. If you wish to discuss the matter further, please contact Andrew Kalbarczyk on 301 0101. Should you wish to request any of the files listed above for viewing, please contact the Auckland Council Call Centre on 301 0101 and note you are requesting former Auckland Regional Council records (the records department requires three working days' notice to ensure files will be available).

Please note: the Auckland Council cost recovers officer's time for all site enquiries. As such an invoice for the time involved in this enquiry will follow shortly.

Yours sincerely

David Hampson Team Leader - Earthworks and Contaminated Land Natural Resources and Specialist Input

Attachment A

1 ACTIVITY DESCRIPTION:	To authorise the construction of up to 16 bores for investigation purposes.
ACTIVITY ID:	21951
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Opus International Consultants Ltd
CONSENT NUMBER:	28231
CONSENT STATUS:	Expired
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20040824
FILE REFERENCE:	C512-12-3153*
GRANTED DATE:	20030820
LOC TYPE:	Point
PROCESSING OFFICER:	Sarah Pinkerton
PROPERTY ADDRESS:	Eastern Corridor Auckland City & Manukau City
PURPOSE:	To authorise the construction of up to 16 bores for
	investigation purposes.
REVIEW DATE:	Null
SITE DESCRIPTION:	St Johns
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of up to 16 100mm diameter bores, to a depth of approximately 40m. Installation of PVC casing.

2. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	20039
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Discharge Other
CONSENT HOLDER:	Transpower New Zealand Limited

CONSENT NUMBER:	24690
CONSENT STATUS:	Expired
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20010531
FILE REFERENCE:	15256
GRANTED DATE:	20010223
LOC TYPE:	Point
PROCESSING OFFICER:	Wes Smith
PROPERTY ADDRESS:	Parts of the four power transmission towers as described in the application, being towers on the Otahuhu-Penrose A Line Numbered 20, 22 and 37 and tower Number 9 on the Penrose-Roskill A Line.
PURPOSE:	To authorise the discharge of contaminants to
REVIEW DATE:	Null
SITE DESCRIPTION:	Manukau & Auckland City
SITE NAME:	Transpower Towers
WORKS DESCRIPTION:	The discharge of blast media and wastewater to ground as a result of power transmission tower refurbishment trials.

2. ACTIVITY DESCRIPTION:	Clean & paint tower previously coated wit lead- based paint
ACTIVITY ID:	20066
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Discharge Other
CONSENT HOLDER:	Transpower New Zealand Limited
CONSENT NUMBER:	25577
CONSENT STATUS:	Superseded
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20041231
FILE REFERENCE:	15256
GRANTED DATE:	20011025
LOC TYPE:	Point
PROCESSING OFFICER:	Belinda Gillespie
PROPERTY ADDRESS:	All transmission towers Otahuhu-Penrose B Line Manukau City
PURPOSE:	To authorise the discharge of contaminants to ground from the maintenance trials on specified lead painted power transmission towers in the Auckland Region in accordance with Section 15(1)(b) of the Resource Management Act 1991.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Transpower Towers
WORKS DESCRIPTION:	Null

2. ACTIVITY DESCRIPTION:	Clean & paint tower previously coated wit lead- based paint
ACTIVITY ID:	20066
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Discharge Other
CONSENT HOLDER:	Transpower New Zealand Limited

CONSENT NUMBER:	26761
CONSENT STATUS:	Expired (Not Replace
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20041231
FILE REFERENCE:	15256
GRANTED DATE:	20020913
LOC TYPE:	Point
PROCESSING OFFICER:	_Clive Couldwell
PROPERTY ADDRESS:	All transmission towers Otahuhu-Penrose B Line
A DESCRIPTION OF A DESC	Manukau City
PURPOSE:	To authorise the discharge of contaminants to
	lead painted power transmission towers in the
and shap to the provider and the	15(1)(a) and (b) of the Resource Management
	Act 1991.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Transpower Towers
WORKS DESCRIPTION:	Null

2. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	20111
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Discharge Other
CONSENT HOLDER:	Transpower New Zealand Limited
CONSENT NUMBER:	26789
CONSENT STATUS:	Expired (Not Replace
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20041231
FILE REFERENCE:	15256
GRANTED DATE:	20020913
LOC TYPE:	Point
PROCESSING OFFICER:	_Clive Couldwell
PROPERTY ADDRESS:	Parts of the transmission towers as described in the application, being tower Number 25 on the PEN - ROS A Line Auckland City
PURPOSE:	To authorise the discharge of contaminants to ground from the maintenance trials on specified lead painted power transmission towers in the Auckland Region in accordance with Section 15(1)(b) of the Resource Management Act 1991.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Transpower Towers
WORKS DESCRIPTION:	Null

3. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	To authorise the construction of nineteen bores for Geotechnical investigation.
ACTIVITY ID:	28689
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Under Assessment
EASTING:	1766322
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4948*
GRANTED DATE:	Null

LOC TYPE:	Point
NORTHING:	5912882
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52773
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	
PURPOSE:	To authorise the construction of nineteen bores for Geotechnical investigation.
REVIEW DATE:	Null
SITE DESCR:	Multiple sites across Reeves Rd Flyover, Pakuranga. Sites ranging between coordinates: 1) E 1766322 N 5912882(2) E 1766548 N 5912835(3) E 1767011 N 5913381
SITE NAME:	Reeves Rd Flyover
WORKS DESCRIPTION:	Null

4. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	To authorise the construction of nineteen bores for Geotechnical investigation.
ACTIVITY ID:	28689
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Under Assessment
EASTING:	1766548
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4948*
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5912835
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52773
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	
PURPOSE:	To authorise the construction of nineteen bores for Geotechnical investigation.
REVIEW DATE:	Null
SITE DESCR:	Multiple sites across Reeves Rd Flyover, Pakuranga. □ Sites ranging between coordinates:□1) E 1766322 N 5912882□2) E 1766548 N 5912835□3) E 1767011 N 5913381
SITE NAME:	Reeves Rd Flyover
WORKS DESCRIPTION:	Null

5. ACTIVITY DESCRIPTION:	5/12/09 ext appeal date to due to submitteres not getting their copy of decision: WBS 30355 master C 8 Pakuranga - network discharges wetweather and emergency discharges
ACTIVITY ID:	20592
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Wastewater Discharge
CONSENT HOLDER:	Watercare Services Limited
CONSENT NUMBER:	30355
CONSENT STATUS:	Issued
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20431231
FILE REFERENCE:	18036
GRANTED DATE:	20091030
LOC TYPE:	Point

PROCESSING OFFICER:	Lisa Doran
PROPERTY ADDRESS:	Wastewater Network within the Catchment 8
	Pakuranga Manukau City
PURPOSE:	To authorise the discharge of wastewater to land
	or water as a result of wet weather wastewater
	overflows, and/or overflows resulting solely from
average anide to distinct word with	network blockages or breakages, and/or
Average freedowned and	exfiltration, and/or power failure or mechanical
	failure at pump stat
REVIEW DATE:	20151231
SITE DESCRIPTION:	PS 9, 10, 11, 12, 13, 17, 18, 33 and 65
SITE NAME:	C 8 Pakuranga
WORKS DESCRIPTION:	As indicated in the Catchment 8 WNMP prepared
	by Manukau Water Limited.

6. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Tank removal
ACTIVITY ID:	21038
ACTIVITY STATUS:	Occurring
CONSENT STATUS:	Under Assessment
EASTING:	1766716.5
EXPIRY DATE:	Null
FILE REFERENCE:	Null
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5913366.2
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	52127
PROCESSING OFFICER:	Null
PROPERTY ADDRESS:	3 Kentigern Close Pakuranga Manukau City
PURPOSE:	file T096-03-1288
REVIEW DATE:	Null
SITE DESCR:	Lot 1 DP 149241, Lot 51 & 52 DP 69912
SITE NAME:	Mobil Pakuranga
WORKS DESCRIPTION:	Environmental Site Assessment report received 12/09/08

6. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Ex Mobil service station. Remediation undertaken by Mobil. The CoC granted 21/9/2009.
ACTIVITY ID:	21076
ACTIVITY STATUS:	Completed
CONSENT STATUS:	Assessment Completed
EASTING:	1766716
EXPIRY DATE:	Null
FILE REFERENCE:	21158
GRANTED DATE:	20090921
LOC TYPE:	Point
NORTHING:	5913382
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	52257
PROCESSING OFFICER:	John O'Grady
PROPERTY ADDRESS:	3 Kentigern Close Pakuranga Manukau City
PURPOSE:	An application for a Certificate of Compliance to certify that the soil contaminant levels at the site.meet the PA criteria, based on PARP:ALW

	Rule 5.5.41
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Sea Horse Investments Ltd
WORKS DESCRIPTION:	Rule 5.5.41

6. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Removal of underground storage tanks and pipework
ACTIVITY ID:	21021
ACTIVITY STATUS:	Completed
CONSENT STATUS:	Assessment Completed
EASTING:	1766716
EXPIRY DATE:	Null
FILE REFERENCE:	21158
GRANTED DATE:	20090209
LOC TYPE:	Point
NORTHING:	5913382
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	52100
PROCESSING OFFICER:	John O'Grady
PROPERTY ADDRESS:	3 Kentigern Close Pakuranga Manukau City
PURPOSE:	Certifying that the petroleum hydrocarbon residues left in the soils tested after the removal of the UPSS meet the ARC PA Criteria under rule 5.5.42(2) for the site being used for petroleum storage
REVIEW DATE:	Null
SITE DESCR:	Certifying that the petroleum hydrocarbon residues left in the soils tested after the removal of the UPSS meet the ARC PA Criteria under rule 5.5.42(2) for the site being used for petroleum storage
SITE NAME:	Sea Horse Investments Ltd
WORKS DESCRIPTION:	PO Dave Robotham Rule 55 42 (2)

6. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Tank removal
ACTIVITY ID:	21038
ACTIVITY STATUS:	Occurring
CONSENT STATUS:	Under Assessment
EASTING:	1766716.5
EXPIRY DATE:	Null
FILE REFERENCE:	Null
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5913366.2
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	52127
PROCESSING OFFICER:	Nutl
PROPERTY ADDRESS:	3 Kentigern Close Pakuranga Manukau City
PURPOSE:	file T096-03-1288
REVIEW DATE:	Null
SITE DESCR:	Lot 1 DP 149241, Lot 51 & 52 DP 69912
SITE NAME:	Mobil Pakuranga
WORKS DESCRIPTION:	Environmental Site Assessment report received 12/09/08

7. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	To authorise the construction of nineteen bores
since investment in the second age	for Geotechnical investigation.
ACTIVITY ID:	28689
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Under Assessment
EASTING:	1767011
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4948*
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5913381
PERMITTED	Bore
PERMITTED ACTIVITY TYPE :	52773
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	
PURPOSE:	To authorise the construction of nineteen bores
	for Geotechnical investigation.
REVIEW DATE:	Null
SITE DESCR:	Multiple sites across Reeves Rd Flyover,
	Pakuranga. DSites ranging between
	coordinates: 01) E 1766322 N 591288202) E
the state of the state of the state of the state of the	1766548 N 5912835E3) E 1767011 N 5913381
SITE NAME:	Reeves Rd Flyover
WORKS DESCRIPTION:	Null
8. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Tank removal validation report provided to AC on
The second s	the 28 June 2010.
ACTIVITY ID:	21228
ACTIVITY STATUS:	Occurring
CONSENT STATUS:	Null
EASTING:	1766830
EXPIRY DATE:	Null
FILE REFERENCE:	6-03-4522
GRANTED DATE:	Null

8. ACTIVITY:

REVIEW DATE:

SITE DESCR:

SITE NAME:

WORKS DESCRIPTION:

LOC TYPE:

NORTHING:

PERMITTED:

PURPOSE:

PERMITTED ACTIVITY TYPE :

PROCESSING OFFICER:

PROPERTY ADDRESS:

Bore

Null

Point 5912819

52616

station.

Contaminated Site Discharge

11 Cortina Place Pakuranga Manukau City

9 samples exceeded the applicable soil

Tanks were pulled in 2010, site no longer a petrol

acceptance criteria. Those exceedances relate to protection of maintenance/excavation workers, and indoor inhalation human health exposure

Tank removal validation report provided to AC on

CONSENT IS REQUIRED FOR THIS SITE!

Andrew Kalbarczyk

pathways. Full

the 28 June 2010.

11 Cortina Place, Pakuranga

ACTIVITY DESCRIPTION:	The construction of four bores for contaminated
	site investigation.
ACTIVITY ID:	28063
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Under Assessment
EASTING:	1766810
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4841
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5912797
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52654
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	11 Cortina Place Pakuranga Manukau City
PURPOSE:	The construction of four bores for contaminated
	site investigation.
REVIEW DATE:	Null
SITE DESCR:	56 Ti Rakau Drive, Pakuranga
SITE NAME:	Chevron
WORKS DESCRIPTION:	The construction of four 100mm diameter bores
	to a maximum depth of 6m. Installation of Grade
	D PVC casing material to an approximate depth
	of 6m. Proposed grouting to 0.5m.

9. ACTIVITY DESCRIPTION:	To authorise the construction of up to 16 bores for investigation purposes.
ACTIVITY ID:	21951
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Opus International Consultants Ltd
CONSENT NUMBER:	28231
CONSENT STATUS:	Expired
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20040824
FILE REFERENCE:	C512-12-3153*
GRANTED DATE:	- 20030820
LOC TYPE:	Point
PROCESSING OFFICER:	Sarah Pinkerton
PROPERTY ADDRESS:	Eastern Corridor Auckland City & Manukau City
PURPOSE:	To authorise the construction of up to 16 bores for investigation purposes.
REVIEW DATE:	Null
SITE DESCRIPTION:	St Johns
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of up to 16 100mm diameter bores,
and the second	to a depth of approximately 40m. Installation of PVC casing.

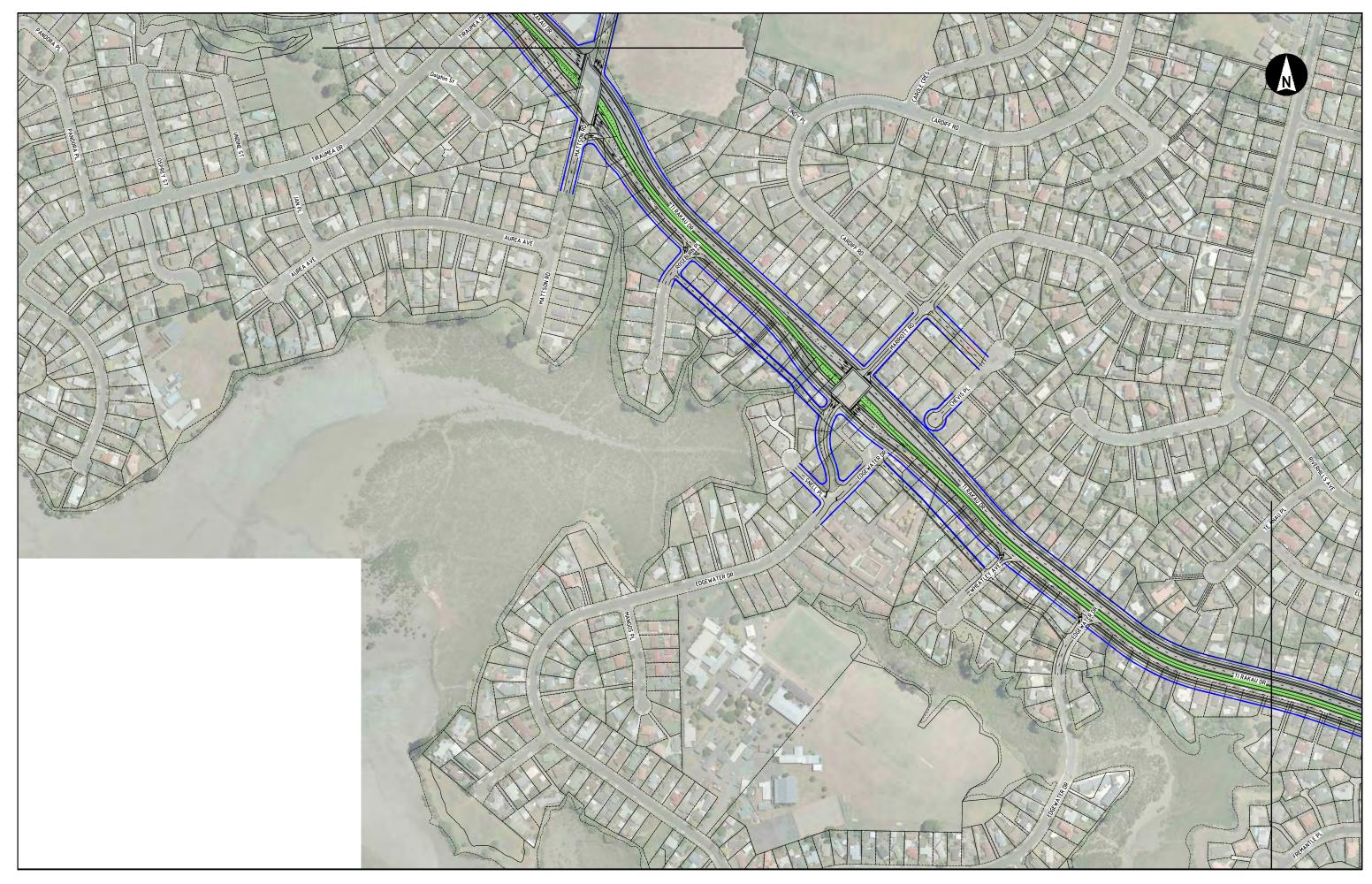
9. ACTIVITY DESCRIPTION:	Largely domestic use for toilets and showers etc.
ACTIVITY ID:	1397
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	TRU-TEST LIMITED
CONSENT NUMBER:	12889
CONSENT STATUS:	Expired
DATE CREATE:	24/09/2012 7:17:02 p.m.

EXPIRY DATE:	19950711
FILE REFERENCE:	C512-12-1309
GRANTED DATE:	19940711
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of a bore for the extraction of groundwater for supply to industrial showers & toilets.
REVIEW DATE:	Null
SITE DESCRIPTION:	241 TI RAKAU DRIVE, EAST TAMAKI
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx 120m depth and installation of steel casing to approx. 90m.

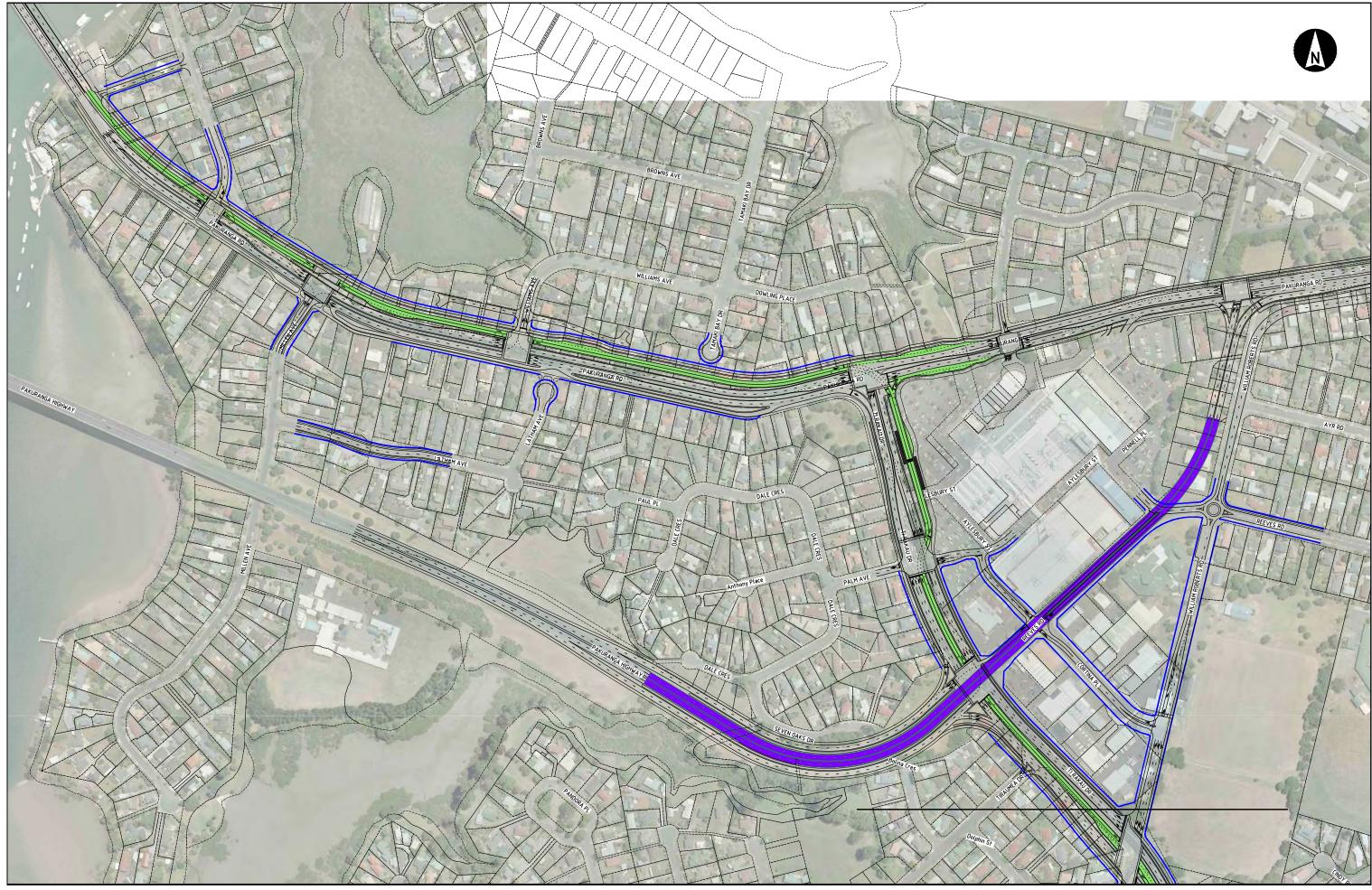
9. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	5225
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Pattle Delamore Partners Limited
CONSENT NUMBER:	14985
CONSENT STATUS:	Expired
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	19970311
FILE REFERENCE:	C512-12-1701*
GRANTED DATE:	19960311
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	242 Ti Rakau Drive East Tamaki Manukau City
PURPOSE:	Authorize the construction of three (3)
	piezometers for groundwater level and/or
	Chemistry investigations 3 bores drilled under
the second second second second second	bore code 5225. Details of S1 bore entered.
REVIEW DATE:	Null
SITE DESCRIPTION:	242 Ti Rakau Drive, Pakuranga
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of three (3) 50mm dia. piezometers
	to approx 5m depth. Installation of PVC casing to
	approx 5m and PVC screen from approx. 1m to
	5m if required.

10. ACTIVITY DESCRIPTION:	To authorise the construction of four bores for environmental monitoring.
ACTIVITY ID:	23194
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	T.M.K. Packers Limited
CONSENT NUMBER:	36060
CONSENT STATUS:	Expired
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20090807
FILE REFERENCE:	C512-12-4267*
GRANTED DATE:	20080808
LOC TYPE:	Point
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	257 Ti Rakau Drive East Tamaki Manukau City

PURPOSE:	To authorise the construction of four bores for environmental monitoring.
REVIEW DATE:	Null
SITE DESCRIPTION:	known as 2/20 Trugood Drive - Rates data as shown in property data 257 Ti Rakau Drive
SITE NAME:	T.M.K Packers Limited
WORKS DESCRIPTION:	The construction of four 50mm diameter bores to an approximate depth of 5m. Installation of PVC casing to an approximate depth of 5m. Proposed grouting to 0.5m. Screen material PVC, depth to top of screen 1m and bottom of screen 5m.

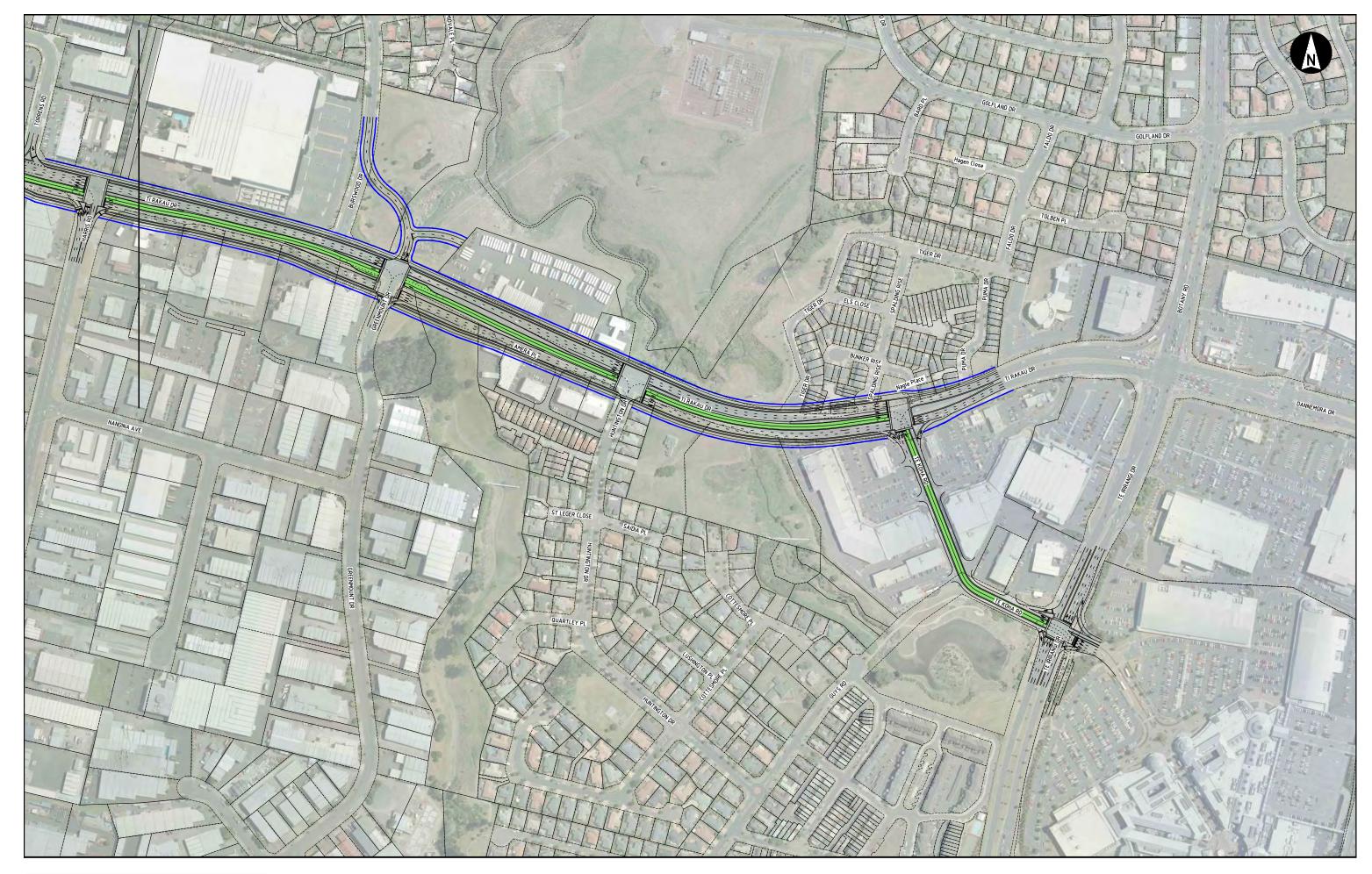

11. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	20209
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Discharge To Air
CONSENT HOLDER:	The Spa & Pool Factory Ltd *In Lig*
CONSENT NUMBER:	29732
CONSENT STATUS:	Issued
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20130428
FILE REFERENCE:	17693
GRANTED DATE:	20030428
LOC TYPE:	Point
PROCESSING OFFICER:	Manukau City Council
PROPERTY ADDRESS:	295 Ti Rakau Drive East Tamaki Manukau City
PURPOSE:	To control the discharge of atmospheric contaminants to air.
REVIEW DATE:	Null
SITE DESCRIPTION:	C-93
SITE NAME:	Spa and Pool Factory
WORKS DESCRIPTION:	Null

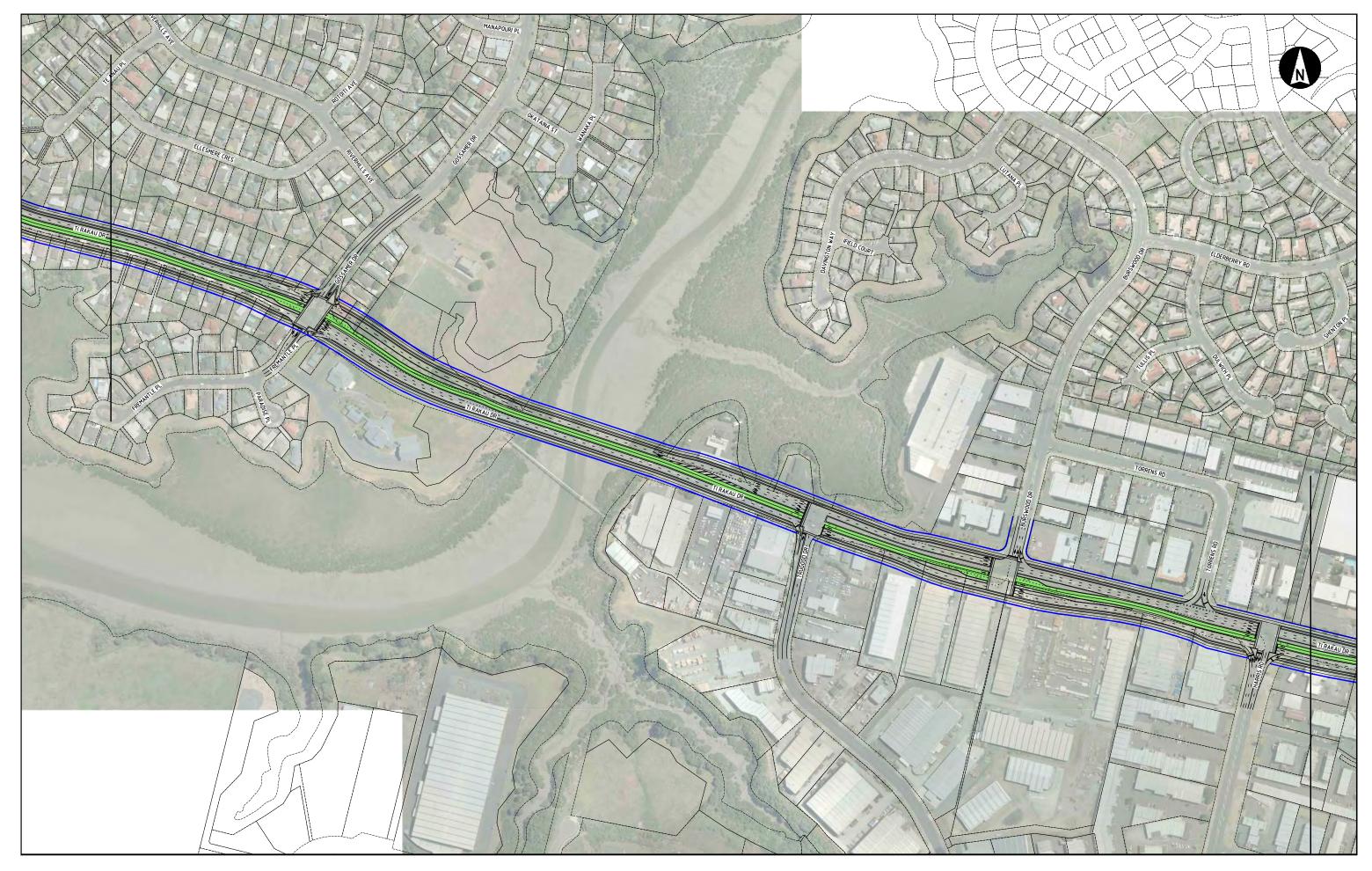
12. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21814
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Chevron New Zealand ***USE 751***
CONSENT NUMBER:	27499
CONSENT STATUS:	Expired
DATE CREATE:	24/09/2012 7:17:02 p.m.
EXPIRY DATE:	20031201
FILE REFERENCE:	C512-12-3033
GRANTED DATE:	20021202
LOC TYPE:	Point
PROCESSING OFFICER:	Michelle Ip
PROPERTY ADDRESS:	380 Ti Rakau Drive East Tamaki Manukau City
PURPOSE:	Authorise the construction of a bore for monitoring purposes.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 50mm diameter bore to a depth of approximately 10m. Installation of PVC casing to a depth of approximately 10m.



Appendix B

Pakuranga Scheme Assessment Alignment Sheets





		A3 SCALI A1 SCALE			
0	50	100	150	200	250 (m)

		A3 SCALE A1 SCALE				
0	50	100	150	200	250	(m)

		A3 SCAL A1 SCAL	- · ·		
0	50	100	150	200	250 (m)

Wenese.

Auckland Regional Council TE RAURITANGA TAIAO

26 November 2003

Caltex New Zealand Limited PO Box 684 Auckland

Attention: Simon Hunt

Dear Simon

Caltex: Howick and Eastern Buses Depot.

Thank you for meeting with Auckland Regional Council (ARC) staff on 30th October to discuss Howick and Eastern Buses Depot and submitting the Summary of Works report for this site.

The ARC acknowledge the successful removal of product from within the tank pit by manual and automated product recovery systems, ARC are happy to approve the decommissioning of the system by Caltex and allow the residual product to attenuate naturally. However, in the unlikely event of an increase in product within the tank pit, the ARC are to be informed and a recovery system installed immediately.

Please note that as the ARC is a ratepayer funded organisation, it is our policy to recover costs incurred for provision of information in respect of resource consents in accordance with Section 36(1)(e) of the RMA 1991. These costs may include officer's/consultant's time, travel and analytical fees.

If you have any queries regarding the above please contact Sarah Harvey, ARC on 366 2000 ext. 8084.

Yours sincerely

STU:

Sarah Harvey Environmental Scientist Contaminated Sites Vodafone House, 21 Pitt Street Private Bag 92 012, Aucktand New Zealand DX CP 28 008 Pitt St Telephone +64 9 379 4420 Facsimile +64 9 366 2155 www.arc.govt.nz

To: Simon Hunt - Caltex

From: Shane Moore

µtri,

Subject: Caltex: Howick & Eastern Bus Depot - Summary of Works to 1 October 2003

1. Summary of Works

As requested please find following a summary of the works completed at the above site to 1 October 2003. A graphical summary of the product recovery works, volumes of product recovered and product thicknesses within the tank pit is provided on the attached chart.

- 1. Investigation works were completed at the site between 29 November and 12 December 2002, these comprised:
 - Drilling of two deep (~10m bgl) and two shallow (~4m bgl) soil bores and collection of soil samples for analysis. One soil bore was located on each of the four sides of the tank pit (refer attached site layout sketch).
 - Installation of one deep (MW1 10m bgl) and two shallow (SW1 & 2 0.8m bgl) groundwater monitoring wells and collection of a groundwater sample from the deep well for analysis.
 - Determination of the presence of separate phase product and depth to water in all monitoring wells.

In summary, the findings of the investigation works were that the product and water appeared to be perched and contained within the tank pit as a result of the low permeabilities of the surrounding silt and clay soils and that the soils adjacent to the tank pit have not been impacted by the presence of product in the tank pit.

- 2. A product recovery trial was conducted on 8 December 2002. Approximately 1250 litres of product and liquid was pumped, by skimming, from the tank pit. An estimated volume of approximately 800 litres of product was recovered.
- Product recovery works were conducted Carlyon Civil Construction by manually skimming product from the tank pit between 20 December and 18 February 2003.
 Carlyon estimate that approximately 2250 litres of product was recovered (total to 18 February 2003 = 3050 litres).
- 4. On 14 May 2003 the automated product recovery system was commissioned. The system skims product from a product only skimmer installed in one of the tank pit observation wells (OB2). A pneumatic diaphragm pump operates the product

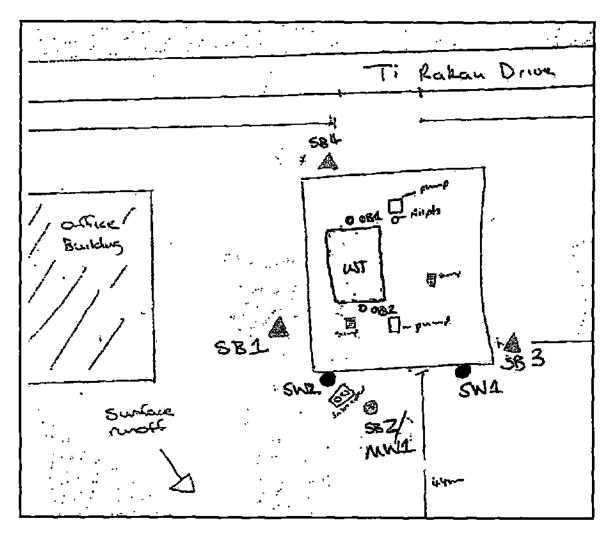
URS New Zealand Limited 6th Floor, Bank Direct Centre 13-15 College Hill, Auckland PO Box 621, Auckland New Zealand Tal- Ad 9 355 1361

Memo To: Simon Hunt - Caltex 30 September 2003 Page 2 of 4

skimmer (air is supplied from workshop compressor on-site) and delivers the recovered product to a bunded above ground storage tank that is situated within the depot carpark, adjacent to the refuelling area.

In summary, the automated recovery system has recovered a further volume of approximately 2265 litres since May 2003, bringing the total volume of product recovered to approximately 5300 litres as at 1 October 2003. Product thicknesses in the tank pit have been reduced from an initial thickness of approximately 200mm to less than 10mm.

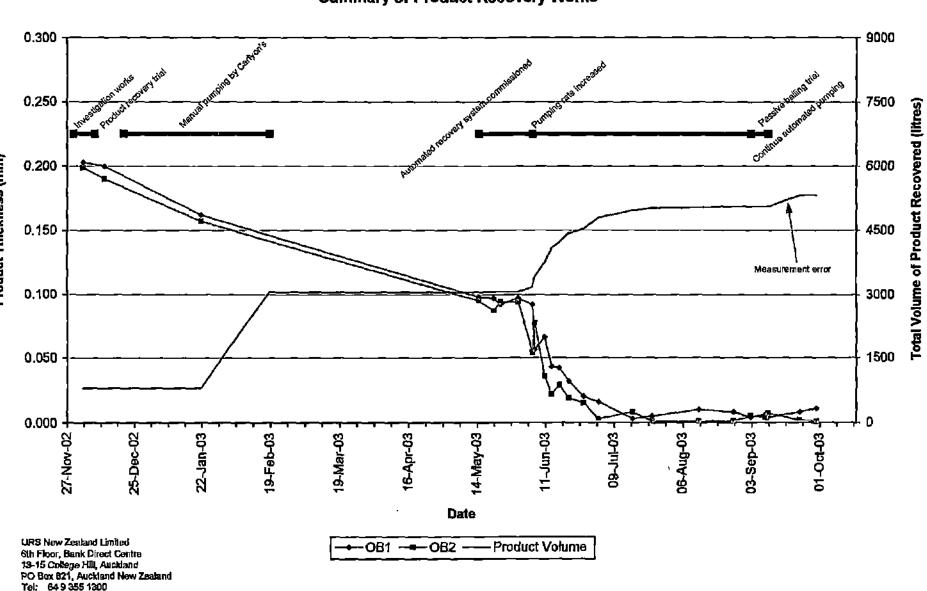
2. Future Works


Over the last few months the rate of recovery of product from the tank pit has reduced significantly, as the product thicknesses in the tank pit have been reduced. In recent weeks the system has recovered minimal additional product (within the error of measurement in the holding tank), and it appears that the system has recovered as much product as it is efficiently capable of in its current configuration. The most effective options for future works are considered to be:

- Cycle the system on and off to attempt to enhance product movement to the skimmer in OB2; or
- Relocate the skimmer to OB1, where product thicknesses have consistently been slightly larger, in an attempt to increase the rate of recovery; or
- Decommission and the system and allow the residual product to attenuate naturally (dependent on approval from the Auckland Regional Council).

Regards,

Shane Moore


A.

Site Layout Sketch

URS New Zealand Umited 6th Floor, Bank Direct Centre 13-15 College Hill, Auckland PO Box 821, Auckland New Zealand Tel: 84 9 355 1300

~

URS

CADOCUMENTS AND SETTINGS SHULLOCAL SETTINGS TEMPS UM MARY OF WORKS TO 1 OCTOBER 031.000

Howick & Eastern Bus Depot Summary of Product Recovery Works

Product Thickness (mm)

N

Fax: 64 9 355 1333

۰,

Auckland Regional Council TE RAUHITANGA TAIAO

28 May 2003

Attention: Simon Hunt EHS Country Co-ordinator CaltexNew Zealand Limited PO Box 684 AUCKLAND

Dear Simon

jont aquire a

Caltex: Howick and Eastern Buses Depot

Thank you for the 25 March 2003 information from URS New Zealand Limited in relation to this site.

The conclusions of our letter of 28 January 2003 stand.

Yours sincerely

(. Carliner

Clive Couldwell ARC consultant (Land and Water Quality)

Vodafone House, 21 Pitt Street Private Bag 92 012, Auckland New Zealand OX CP 28 008 Pitt St Telephone +64 9 366 2000 Facsimile +64 9 366 2155 www.arc.govt.n2

File Ref 8-03-2167

AR-2003 (2:00	FROM-URS NEW FEALAND LTD	+64 8 3551333	T-196 P.001/006 F-722
URS	RECEIVED 100 - 10	Fax Tr	ansmittal
Tu.	Clive Couldwellad Regional Council	From: URS Project No:	Shane Moore 48213-167
. ,	Company: Auckland Regional Council		
Facsimile:	366 2155	Date:	25 March 2003
cc;	Simon Hunt (Caltex) - 529 4881	Page 1 of:	6
Your Ref:			
Special Instructions:	Confidential Urgent Please	e Reply 🗹 For Yo	our information D For Follow-up
If you do not ree wrong fax numb	eive all pages or transmission is illegible, please crut: er, would receiver please destroy this copy and notify	ed the originator to re-se URS immediately. Thank	nd. Should the facsimile be sent to the (you.
Subject	Caltex: Howick and Eastern Buses	Depot	

Message:

Dear Clive,

Further to your letter to Caltex dated 13 March 2003 regarding the status of the tank pit at the above site, please find following copies of the borelogs for all of the soil borings completed at the site. The investigation locations are presented on the attached sketch map. We would like to confirm that the tanks at this site are installed in natural materials and that no concrete lined tank pit is present. However, we would like to reiterate our findings to date, in summary these are:

- Product and water appears to be perched and contained within the tank pit as a result of the low permeabilities of the surrounding silt and clay soils.
- There is no evidence that hydrocarbon product has migrated within either the shallow granular basecourse fill materials or stormwater services.
- The soils adjacent to the tank pit have not been impacted by the presence of product in the tank pit; (2) i, that very this
- Low concentrations of dissolved phase contaminants were detected in group/dwater adjacent to the tank pit, however these concentrations maybe an artefact of the limited development able to be achieved. Furthermore, the dissolved phase concentrations would be expected to be rapidly attenuated within the fine grained soils surrounding the tank pit.

Please do not hesitate to contact either Simon Hunt or myself if you have any further queries regarding this site.

Regards.

Shane Moore Senior Hydrogeologist

URS New Zealand Umited 6th Floor, Bank Direct Centre 13-16 College Hill, Auskland PO Box 821, Auskland New Zealand Tet: 64 9 335 1300 Fax: 64 9 355 1333

SADDESHEZISHETARC - TANK ITT GTATUS DOC

25-WAR-2003 12:00 FROM-URS NEW TEALAND LTO

.

:

:

:

÷

1

•

ł

> ļ

1

i

•

ł

URS Version Data						e		DRIL	L HOLE LOG SB1	o t		
	UKS Now Zeeland Littled. Provide CD 3591300 13-15 College Hill, Porzonby, Auckland Fax 09 8551333				-			Project Deference:				
Dri	Drilling Contractor, Geotech Drijlling				452	13-16/		Howick & Eastern Bus Depot	_			
	iil Type 16(le C	s. Indit 853		Logged Checke Data St Data Fir	d By: arted: 29-11-0	2	Rolaivo Coordina Permit N	des	mRL mN mE		Caltex New Zealand Limited	J
	SAMPLE TYPE	וסאורר RUM (m)	FIELD SHEAR STRENGTH (\$PA)	PENETROMETER BLOWS (N)	SAMPLING AND OTHER TESTING	GROUND WATER DATA AND COMMENTS		DEPTH (m)	LEGEND		DESCRIPTION OF STRATA	GEOLOGICAL DESCRIPTION
Ë		0.00						Ē	200	T <u>Aaphall</u> Dark grey	silly, sandy GRAVEL, dry (basecourse) [no odour]	-III
Ē	┢╋╋┥╴	<u>0.70</u>			K858 (0,0-0,8m		1		2	Lightgrey	y CI AY, firm, dry (no odour)	
<u>م ا مرما ا م</u> م		120 2.00			K859 (1.8-2.0m)			2		Dark grey	NUSCKSIILY CLAY, damp [no edebi]	
حتملت فتعامين في		3.00			KB20 (3.0-3.1m)			ر. بالمرجب أحمد ما م	<u>x x x x x x x x x x x x x x x x x x x </u>	Biack, sp	ndy SULT, son, very moist, highly piaetic (no odour)	
ليبدين وليستعينا يعر	A AUGER WITH PUSH TUBE SAMPLI							4 5 10	· · · · · · · · · · · · · · · · · · ·	Darkgreg	y. silly CLAY, damp (no odour)	NGK GROUP ALCUVICIA
بليمينا مستليمينا ورييد	18000 HOLLOW STEM (K861 (7.0-7.2m)			ر. بالمبيناسيانية 8			ndy SiLT, son (paleosol?) [no odour]	TAURAN
ليعد أعتبيا فيعينا		9.00						, , , , , , , , , , , , , , , , , , ,	1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*			
		10.00			KB52 (10 2-10 4	Water level rccoverod k ~9.5m bgl a midday		-10		Vengi <u>h (n</u> Dank grej	wit Sancy SiLT, vilin organicitorous places to 20-30mm in o gloud y SiL I, very wet at 9.3m (no odour)	
ALLER COMPANY								11 11		FNDOF	201 F AT 104m	
AUEGE LUCESERJ WUCKLERE ZWAR		₩K\$: Vœ	ry wer, fr		r @ 0.2m		<u> </u>	-		·		

RECEIVED 25-MAR-2003 01:01PM FROM-+6493551333

.

TO-AUCKLAND REGIONAL CO PAGE 002

25-MAR-2003 12:01 FROM-URS NEW 7EALAND LTO

i.

.

+64 8 3551333

;

:

1

ļ

ï

t F

ļ

|

i

|

, '	URS Vendoorde		1	RIL	LH	IOLE LOG MW1 (SB2)	of 1
URS New Zealand Linu 13-18 Collego Hill, Pont Dellung Contractor	ted,	Phone 09 3551300 Fax 09 3551332		-167		Piviet Rufages. Howick & Eastern Bus Depot	
Dritl Type: Mobile Drill B\$3	Legged by: Checked Ry: Date Started Date Finishe		Ratativa Laval, en At Coordinates: mN mE Permit No:	m£		Client: Caltex New Zealand Limitod	
AND TEST	NG	ELL CONSTRUCTIO	N DETAILS	DEPTH (m)	LEGEND		GEOLOGICAL DESCRIPTION
K852 (0.8.0.9) (853 (1.4-1.5) K855 (m) Bentoal m) Bentoal m) West m) Walton m) Walton	Backfill	50mm Machine Stotted PVO Sarcan		× × × × × × × × × × × × × × × × × × ×	Aphaint Dark grey, sity, sandy GRAVEL, dry (basecoutrie) [no doar) Light yellow CLAY, firm, dry to damp [no odour] Light grey CLAY, very firm, dry, Gradet to the day with depit [no odour] Light grey, sity CLAY, soft [no odour] Dark grey CLAY, damp, soft [no odour] Dark brown, candy SiLT, dry (poleoteci) [no odour] Light grey SILT with tome tand, firm, dry, some sand leyers [no odour] Light grey SILT with tome tand, firm, dry, some sand heart [no odour]	TAURANGA GROUP ALLUMUN
	level as at 3/12/0	 2.		<u> </u>			
RIEMARICS: Wale						<u> </u>	,

25-MAR-2003 12:01 FROM-URS NEW 7EALAND LTD

İ

.

.

: İ

!

.

.

ĺ

.

ļ

ł

.

ļ

ļ .

í | ;

l

ſ	,		U		ene Croa 1 Sucre					DRIL	L HOLE LOG SB3	1 of 1
13					Picjush				Project Referance; Howick & Eastern Bus Deput			
	Unit (ype: Logged By. S Themson Mobile Dnit 453 Checked By: Date Statted; 2-12-07				me		Caltex New Zealand Limited					
	SKMP.E TYPE	DRILL RUN (m)	FIELD SHEAR STRENGTH (APA)	PENETROMETER BLOWS (N)	SAMPLING AND OTHER TESTING	GROUND WATER DATA AND COMMENT	METE	DEPTH (m)	LEGEND		DESCRIPTION OF STRATA	GEOLOGICAL
		0.00 0.50						U 	2 2 2 3 2 2 5 5 9		y silty, sandy GRAVEL, dry (baseccourse) [no odour]	
و و او و و و و و		1.00			K863 (0.7-0.8m)			- - 1	×+++++++++++++++++++++++++++++++++++++		ow SILT, damp, plastic inc odour	
	TURE SOMPLING	1.50			K854 (1.4-1.5M			- - -	* * * * * * * * * * * * * * * * * * *			NN
	TW STEM BLIGER WITH PLISH TURE SAMPLING							2	**************************************			TAURANGA GROUP ALLUNIUM
	1 Shimm HOT I TUN ST	3.00			K865 (2.9-3.0m			-3 3 				
					KR68 (3 9-4.0m					ENDOF	HOLE AT 4.0m	
UT 2016/05								- - 				
VICES INCOMENTATION INCOMENTATION	RCWA			<u> </u>	<u> </u>			l 	<u> </u>]		

.

25-WAR-2003 12:01 FROM-URS NEW 7EALAND LTD

•

i

÷

,

£

į

ł

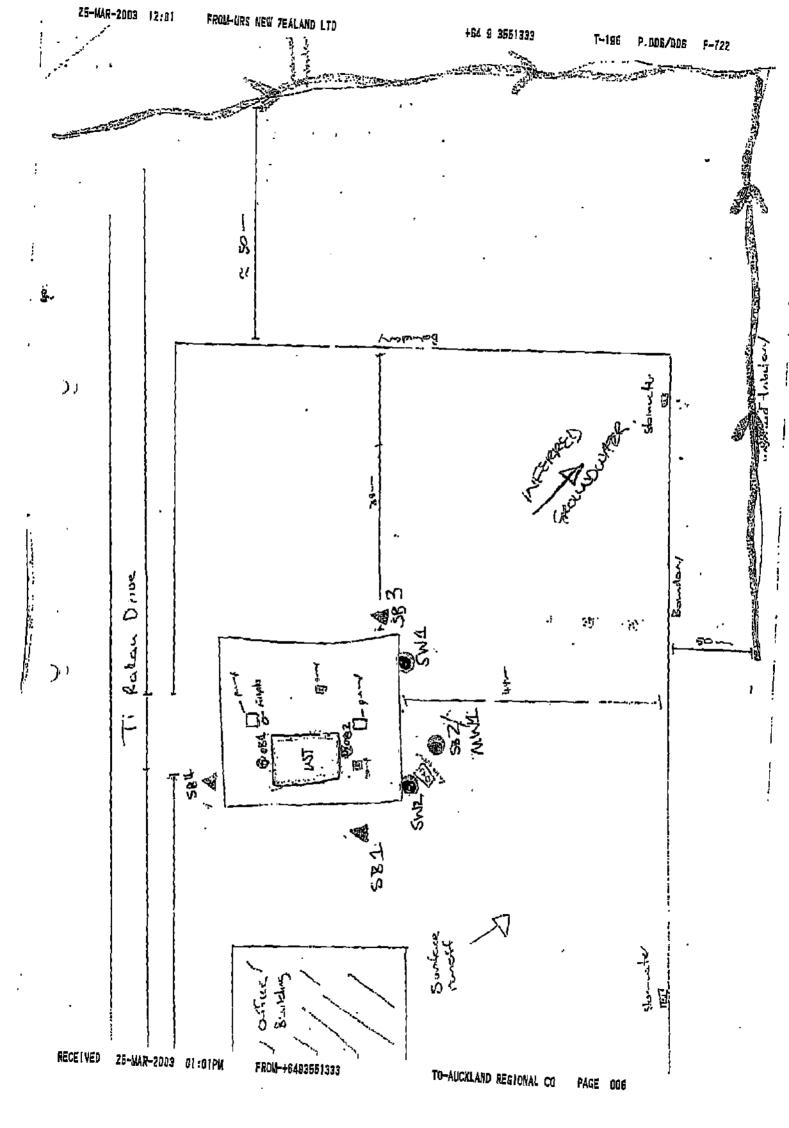
. .

ļ

i

i

ļ


::::

l

1

\int	,		U							DRIL	L HOLE LOG SB4	<u>‡ 1 of 1</u>
12	URS Now Analans Limited. 12-15 College Hil, Ponsonby, Auckland Pail 09 3551333 Drilling Contractor: Geotech Drilling					48213-167 Howick & Eastern Bus Du		<u></u> т	Project Reterone:: Howick & Eastern Bus Depot			
	Dria Type: Luggeu By. S Thomson faoble Drill RS3 Checked By: Date Startest: 2-12:02				Coordina			Caltex New Zealand Limited				
	SAMPLE TYPE	DRILL RUV (m)	FIELD SHEAR STRENGTH (HPA)	PENETROMETER BLOWS (N)	Sampling and other testing	GROUND WATER DATA AND CUMMENT	PIEZOMETER CONSTRUCTION	DEPTH (m)	LEGEND		DESCRIPTION OF STRATA	GEOLOGICAL DESCRIFTION
		0.00							5 5 5 5 5 3 5 5 5 5 5 3		y silty, sandy GRAVEL, dry (basecourse) [rio odour] y CLAY, vely firm, dry (no odeur]	317
			2		่⊀ติสล (ถ q−1 ถึกา)							
	THE RULE AND A LONG AND A LONG	н.			Kəsi (1.9-2.0m)			2		Light gro	y dayey SILT, crumbly (ne odour)	NGA GROVF ALLUVUM
e - 1 +											ndy SILT, solit (paleosol?) (no odour)	TAURANGA GRD
د المحدد ما										Gray CL	AY, molet, cah (no odour)	
					K870 (3 3-4.0m			- - - -		ENDOF	HOLE AT 4.0m	
								 - -			<u></u>	
	EMA	RK8:		-								فىروب

RECEIVED 25-MAR-2003 01:01PM FROM-+8493551333

Auckland Regional Council TE RAUHITANGA TAIAD

13 March 2003_

Attention: Simon Hunt EHS Country Co-ordinator Caltex New Zealand Limited PO Box 684 AUCKLAND

Dear Simon

Caltex: Howick and Eastern Buses Depot

Further to the meeting at the Auckland Regional Council on Tuesday 04 March when we briefly mentioned this site and the ARC's letter of 28 January 2003.

It would appear that there is some conflicting information in respect of the tank pit at this site. Notes on the ARC file from telephone conversations with the URS New Zealand Limited field staff indicate that the tanks were in a "concrete lined pit, 6 years old". However, at the meeting on the 4th it transpired that the tank pit was natural materials with no secondary containment. This could put the situation in a different perspective.

Could you please forward a bore log of the two deep soil bores at the site and confirm the status of the tank pit.

Yours sincerely,

C. Construcci

Clive Couldwell ARC consultant (Land and Water Quality)

Vadafone House, 21 Pitt Street Private Bag 92 D12, Auckland New Zealand DX CP 28 008 Pitt St Telephone +64 9 379 4420 Facsimile +64 9 366 2155 www.arc.govt.nz

File Ref 6-03-2157

Auckland Regional Council TE RAUHITANGA TAKAO

28 January 2003

Attention: Simon Hunt EHS Country Co-ordinator Caltex New Zealand Limited PO Box 684 AUCKLAND

Dear Simon

Site Contamination at the Howick and Eastern Buses Depot, Auckland

The Auckland Regional Council (ARC) acknowledges the receipt of the information from URS New Zealand Limited (URS) regarding the ground contamination that has been detected at the Howick and Eastern Buses depot at 380 TI Rakau Drive, East Tamaki.

The information which has been received by the ARC is as follows: i. URS Summary of Works report dated 19 December 2002.

This information provides reference data with respect to levels of ground contamination present at the site both prior and subsequent to remedial works being undertaken. The site is currently zoned as in the Manukau City – Operative District Plan.

Would you request URS to forward documentation to enable the sample numbers. to be correlated with the sampling sites.

Human Health Considerations:

The ARC notes from the results contained in the information detailed above that low levels of residual contamination remain in the ground at the site. These levels fall below recommended guideline concentrations for soil (which considers, primarily, the protection of human health and, to a limited extent, aesthetic considerations) for continuing commercial/industrial land use in accordance with the "Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand," promulgated by the Ministry for the Environment, and dated August 1999. Therefore, risks posed at this site to human health by petroleum contaminants are currently minimal due to concentrations below guideline values.

Groundwater Considerations:

The levels of residual contamination in soil also fail below the recommended guideline concentrations for the soil acceptance criteria for protection of groundwater quality (MfE, 1999). Therefore, risks posed at this site to groundwater quality by petroleum contaminants are considered to be minimal. One groundwater sample was also taken. The levels of residual contamination in groundwater are at or fail below the tier 1 acceptance criteria for potable use (MfE, 1999).

On the basis of the Information received above, the ARC does not currently require a resource consent for this site to authorise the discharge of residual contaminants from this site to ground.

Copies of the above report will be forwarded to the TLA for inclusion on their files relating to the site, with the recommendation that all Land and Property Information

2074, 2084 COMEDIATION AWARD WINDING E CALLANO BUSINESS EXCELLENCE

IS Ref. Hootcontaminated sites/oil industry/tank pulls/letters/6-09-2157 letter01.doc

Vodafone House, 21 Pitt Street Private Bag 92 012, Auckland New Zealand 0X CP 28 008 Pitt St Telephone +64 9 379 4420 Facsimile +64 9 366 2155 www.arc.govt.nz

File Ref 6-03-2157

Memoranda (LIM/PIM) made available by their Council will include the following statement:

2

This site has been used for fuel storage and dispensing for an unknown period until December 2002. As a result of this land use, soil in the vicinity of the facilities investigated has been contaminated with petroleum hydrocarbons. Remediation has reduced the risks to human health and the environment posed by petroleum hydrocarbon contamination at these locations to levels acceptable to the Auckland Regional Council at 03 December 2002 provided the long-term site land use remains commercial/industrial. Details of the site, contamination and risk assessment are contained within:

i. "Report" by URS New Zealand Limited Project No. 48213\167, dated 19 December 2002.

It is noted that there may be other facilities at the site (other than those investigated) which could have the potential for soil and/or groundwater contamination.

If you have any queries regarding this correspondence please do not hesitate to contact the writer on (0-9) 298 0279 (Integrated Waste Solutions office) or mobile 027-280 3820.

Yours sincerely

1. Callweer

Clive Couldwell ARC Consultant (Land and Water Quality)

CC;

TLA – Manukau City Counci URS New Zealand Limited

ì

TANK PULL REPORT ASSESSMENT

Date of Assessment:	20 JAN 2003
File Reference:	
Site Name:	HOWNER + EASTERN BUS DEPOT
Site Address:	380 TI RAKAL DRIVE PAKLIRANGIA / EAST TAMAKI
Date of Covering Letter:	19 RECEMBER 2002
Pit Details	Lined/Unlined Alog STATES
Groundwater at Site:	2-76 m
Zoning:	
Guidelines Used:	Applicable - Yes/No No Sole Con 7.
Samples:	Applicable - Yes/No No Sole Com?. Number as per guidelines - (Yes/No Four Com?.
	Location as per guidelines - Yes/No
	Analyses as per guidelines - Yes/No TPH - HIL < D.L.
	Validation Sampling - (Yes/No
Recommendation	Sign off/Further Investigation

Cio-Ciu cone = Oic Industrin PotADLA Limit. OTHER C BANDS LESS THAN GLUDE LIME.

6-03-9157

Date: 19 December 2002

To: Simon Hunt - Caltex

١

From: Shane Moore

ITRS

Subject: Caltex: Howick & Eastern Bus Deport - Summary of Works

Please find following an outline of the works completed to date at the above site:

1. Summary of Works

The following works were completed at the site between 29 November and 12 December:

ł

- Drilling of two deep (~10m bgl) and two shallow (~4m bgl) soil bores using hollow stem augering techniques. One soil bore was located on each of the four sides of the tank pit (see attached site location sketch).
- Two soil samples, were selected for TPH analysis from each soil boring location. At each location the soil samples were selected at a depth corresponding to the surface of the natural ground, immediately underlying basecourse fill materials and at the approximate elevation of the groundwater table.
- Installation of one deep (10m bgl) and two shallow (0.8m bgl) groundwater monitoring wells. The deep groundwater monitoring well was located down interpreted hydraulic gradient (based on topography and likely groundwater discharge areas) from the tank pit and adjacent to the interceptor. Two shallow monitoring wells were installed to intercept the shallow basecourse fill, extending down to the natural ground surface to assess any shallow preferential migration pathways.
- A groundwater sample was collected from the deep monitoring well and submitted to the Hill Laboratories for TPH analysis.
- The elevations of all soil bores, monitoring well and services were surveyed.
- The presence of separate phase product and depth to water was determined in all monitoring wells.
- A product recovery trial was conducted on 8 December. Approximately 1250 1 of product and liquid was pumped, by skimming, from the tank pit. An estimated volume of approximately 800l of product was recovered.

URS New Zealand Limited 6th Floor, Bank Direct Centre 13-15 College Hill, Auckland PO Box 821, Auckland New Zealand Tel: 64 9 355 1300 Fax: 64 9 355 1333

٦

Memo To: Simon Hunt - Caltex 19 December 2002 Page 2 of 3

2. Summary of Findings

The following findings have been made based the works conducted to date:

- The drilling works have shown that the geology beneath the site can be summarised as follows:
 - 0 to 0.6m Paving and basecourse gravels
 - 0.6 to >10m Alluvial sediments predominantly silts and clays with some sandy silt (paleosol) horizons observed at depth (~3m and 7m bgl).
- The water levels measured at the site, as at 12 December, are tabulated below. A draft cross-section presenting the relative levels of the site facilities and water levels is attached.

Location	Depth to Product (m bgl)	Depth to Water (m bgl)
Deep Well (MW1)	ND	2.76
Shallow well 1 (SW1)	ND	0.70 (surface water)
Shallow well 2 (SW2)	ND	DRY
Tank Pit Observation Well 1 (OB1)	0.68	0.88
Tank Pit Observation Well 2 (OB2)	0.62	0.81

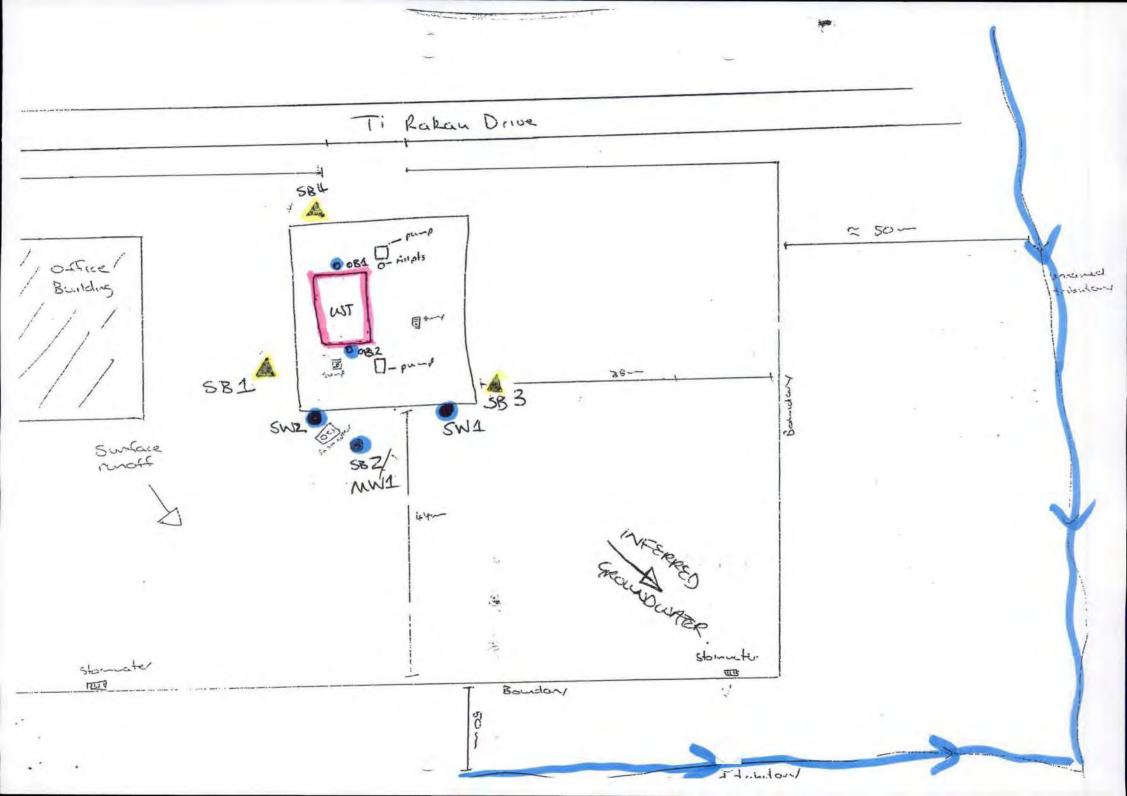
Apparent product thicknesses of approximately 200mm were observed within the tank pit observation wells. However, no separate phase product was reported outside the tank pit within either the shallow or deep monitoring wells.

It can be seen from the attached cross section that the water and product level within the tank pit is perched relative to the natural groundwater level outside the tank pit area.

Stormwater services (associated with the interceptor) in the vicinity tank pit are located at elevations close to or below the elevation of the product within the tank pit. However, no shallow groundwater or product was observed within the shallow basecourse fill or adjacent to these service lines.

Sampling of the deep groundwater monitoring well showed that groundwater yields were low with the well rapidly bailing dry. These observations are consistent with

Memo To: Simon Hunt - Caltex 19 December 2002 Page 3 of 3


the predominantly very low permeability nature of the sediments surrounding the tank pit.

- The laboratory analytical results are attached, in summary:
 - All soil samples yielded TPH concentrations below the level of analytical detection.
 - The groundwater sample collected from the deep monitoring well yielded a low TPH concentration of 3.4 g/m³. However, the low groundwater yield limited development of this well prior to sampling. Furthermore, these dissolved phase concentrations would be expected to be rapidly attenuated within the fine grained soils surrounding the tank pit.

3. Summary

In summary:

- Product and water appears to be perched and coutained within the tank pit as a result of the low permeabilities of the surrounding silt and clay soils.
- There is no evidence that hydrocarbon product has migrated within either the shallow granular basecourse fill materials or stormwater services.
- The soils adjacent to the tank pit have not been impacted by the presence of product in the tank pit;
- Low concentrations of dissolved phase contaminants were detected in groundwater adjacent to the tank pit, however these concentrations maybe an artefact of the limited development able to be achieved. Furthermore, the dissolved phase concentrations would be expected to be rapidly attenuated within the fine grained soils surrounding the tank pit.

Project Notes URS Subject: Calflex : Howsick & Eastern Buses Project/Task No: 48213-167 File Structure/Doc No. By: Date Date: 1 1 of Verified By: Date Sheet 0 1 12137 2 3NULY BO 0 BULSE 200 D Stowing SAT SAN PIL whale when SECTION Hawlick) 2005 B and 0 D256 WELL SHALLOW WELL in the series 3 Slohrom 240 MPL

0

F

0

0

¹ 3 DEC 2002 Hill Laboratories

R | Hill Laboratories Limited

Address: 1 Clyde Street, Private Bag 3205, Hamilton, New Zealand Telephone: +64 (7) 858-2000 Facsimile: +64 (7) 858-2001

Email: mail@hill-labs.co.nz Internet: 🚾 www.hill-labs.co.nz

Client: URS New Zealand Limited Address: P O Box 821, AUCKLAND Contact: Stephen Thomson

Laboratory No: 199087 Date Registered: 4/12/2002 Date Completed: 11/12/2002 Page Number: 1 of 3

Client's Reference: H&E Bus Depot

The results for the analyses you requested are as follows:

Sample Type: Environmental Solids, Soil

Sample Name	Lab No	Dry matter
		(g/100g as rcvd)
K852 29/11/02	199087/1	83.2
K856 29/11/02	199087/2	71.4
K863 29/11/02	199087/3	79.2
K885 29/11/02	199087/4	77.5
K858 29/11/02	199087/5	82.9
K860 29/11/02	199087/6	• 50.0
K868 2/12/02	199087/7	- 81.5
K869 2/12/02	199087/8	74.3

Total Hydrocarbons by GC-FID [OIEWG carbon bands]

Sample Name	K852 29/11/02	K856 29/11/02	K863 29/11/02	K865 29/11/02	K858 29/11/02
Lab No	199087/1	199087/2	199087/3	199087/4	199087/5
Units	(mg/kg dry wt)	(mg/kg dry wt)	(mg/kg dry wt)	(mg/kg dry wt)	(mg/kg dry wt)
C7-C9	< 5	< 6	< 5	< 5	_ < 5
C10-C14	< 10	< 10	< 9	< 10	< 9
C15-C36	< 20	< 20	< 20	< 20	< 20
TOTAL	< 30	< 40	< 30	< 30	< 30

Total Hydrocarbons by GC-FID [OIEWG carbon bands]

Sample Name	K860 29/11/02	K868 2/12/02	K869 2/12/02
Lab No	199087/6	199087/7	199087/8
Units	(mg/kg dry wt)	(mg/kg dry wt)	(mg/kg dry wt)
C7-C9	< 8	< 5	< 5
C10-C14	< 20	< 9	< 10
C15-C36	< 30	< 20	< 20
TOTAL	< 60	< 30	< 40

This Laboratory is accredited by International Accreditation New Zealand (previously known as TELARC). The tests reported herein have been performed in accordance with its terms of accreditation, with the exception of tests marked *, which are not accredited.

This report may not be reproduced, except in full, without the written consent of the signatory.

Sample Type: Water,

Total Hydrocarbons by GC-FID [OIEWG carbon bands]

Sample Name	K871 3/12/02
Lab No	199087/9
Units	(g.m-3)
C7-C9	< 0.03
C10-C14	0.36
C15-C36	3.1)
TOTAL	3.4

Sample Containers

The following table shows the sample containers that were associated with this job.

Container Description	Container Size (mL)	Number of Containers
Glass Jar (Soils)	500	8
Glass, unpreserved for Organics (500 or 1,000 mL)	500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Details of sample bottle preparation procedures are available upon request.

Summary of Methods Used and Detection Limits

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Substance Type: Environmental Solids

Parameter	Method Used	Detection Limit
Dry matter	Dried at 103°C, gravimetric (removes 3-5% more water than air dry)	0.1 g/100g as revd
Total Hydrocarbons by GC-FID [OIEWG carbon bands]	ASE or Sonication Extraction, GC-FID Quantitation US EPA 8015B/NZ OIEWG	N/A

Substance Type: Water

Parameter	Method Used	Detection Limit
Total Hydrocarbons by GC-FID [OIEWG carbon bands]	Solvent (hexane) extraction, GC-FID US EPA 8015B/NZ OIEWG	N/A

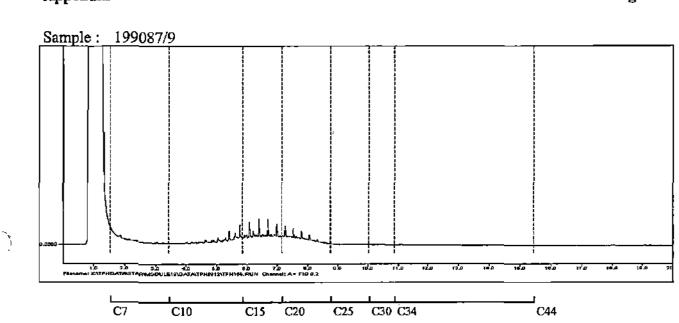
Analyst's Comments:

These samples were collected by yourselves and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the submitter.

This report must not be reproduced, except in full, without the written consent of the signatory.

J.T. Cooner


Peter Robinson, MSc(Hons), PhD FNZIC Environmental Division Manager

Terry Cooney, MSc(Hons), PhD MNZIC General Manager

- R J Hill Laboratories Ltd -

Hill Laboratories, Hamilton, NZ

Total Petroleum Hydrocarbon Chromatograms

Appendix

Page A.1

AMETIEASTERN BUSWAY 2 AND 3

DRAFT ENVIRONMENTAL ASSESSMENT (CONTAMINATION)

DOCUMENT NUMBER. AMETI-SD-RPT-ALL-163-0030-A

CONTRACT NO. 344-17-782-PS Prepared for Auckland Transport | 15-Apr-2019

IMPROVED ENVIRONMENT

(1)

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Draft Environmental Assessment (Contamination)

AMETI Eastern Busway 2 and 3 Design and Consenting

Client: Auckland Transport

Co No.: N/A

Prepared by

AECOM New Zealand Limited 8 Mahuhu Crescent, Auckland 1010, PO Box 4241, Auckland 1140, New Zealand T +64 9 967 9200 F +64 9 967 9201 www.aecom.com

15-Apr-2019

Job No.: 60563280

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM New Zealand Limited (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document	Draft Environmental Assessment (Contamination)
----------	--

Date 15-Apr-2019

Prepared by Matthew Hartley

Reviewed by Emma Trembath

Revision History

Rev Revision Date	Details	Authorised		
Rev	Revision Date	Details	Name/Position	Signature
A	15-Apr-2019	Draft For Client Review	Alan Lees Technical Director - Transportation	

Table of Contents

1.0	Introduc	tion	6
	1.1	Preface	6
	1.2	Summary of Proposed Development	6
	1.3	Objective	6 6 7
	1.4	Scope of Work	7
2.0	Site and	l Environmental Setting	9
-	2.1	Site Description	9
	2.2	Environmental Setting	9
		2.2.1 Geology	9
		2.2.2 Hydrogeology	9
		2.2.3 Ecology	10
3.0	Gap An		11
0.0	3.1	Summary Review	11
	0.1	3.1.1 Background	11
		3.1.2 Purpose	12
		3.1.2 Tupose 3.1.3 Scope	12
		3.1.4 Key Findings and Conclusions	12
	3.2		14
4.0		Data Gap Summary purce Review	14
4.0	4.1		15
		Aerial Photographs	
F 0	4.2	Auckland Council Contaminated Site Enquiry	15
5.0		e Works Methodology	16
	5.1	Areas of Potential Concern and Investigation Rationale	16
	5.2	Environmental Soil and Sediment Sampling	16
6.0		e Works Results	18
	6.1	Field Observations	18
	6.2	Adopted Acceptance Criteria	19
	6.3	Analytical Results	20
	6.4	Quality Assurance and Quality Control	21
7.0	Discuss		22
	7.1	Conceptual Site Model	22
	7.2	Regulatory Assessment (Contaminated Land)	22
		7.2.1 National Environmental Standard for Assessing and Managing	
		Contaminants in Soil to Protect Human Health (NES)	22
		7.2.2 Auckland Unitary Plan Operative in Part (AUPOiP)	22
	7.3	Spoil Reuse and Disposal Recommendations	22
	7.4	Site Management Planning	22
8.0	Referen	ices	23
9.0	Limitatio	ons	24
Appen			
Appen			^
	Figures		A
Appen	ndix B		
••		hotographs	В
A		0 1	
Appen			_
	Data Se	arches	F
Appen	ndix D		
, ibbou	Borehol	e Loas	D
			U
Appen			
	Data As	surance	E
Appen	ndix F		
	Photogr	aphs	F

Appendix G

Soil Analytical Results

Appendix H

Laboratory Documentation

G

Н

1.0 Introduction

1.1 Preface

AECOM New Zealand Limited (AECOM) has been engaged by Auckland Transport (AT) to complete an environmental assessment of contaminated land related aspects (gap analysis of existing Preliminary Site Investigation (PSI)) and Detailed Site Investigation (DSI) in support of the design for the proposed Auckland Manukau Eastern Transport Initiative (AMETI) Eastern Busway 2 (EB2) and 3 (EB3) packages (referenced in this report as the 'proposed transport improvement works area').

1.2 Summary of Proposed Development

The AMETI programme aims to improve transport for Auckland's eastern suburbs by 2025. The programme is divided into a number of packages and this report focuses on packages EB2 and EB3 (**Figure 1**). Refer to **Appendix A** for further figures outlining the development. In summary:

- Package EB2:
 - A bus station within the Pakuranga town centre.
 - A flyover from Pakuranga Road to the Pakuranga Highway following the alignment of the existing Reeves Road.
- Package EB3:
 - A dedicated busway running between the dual carriageways of Ti Rakau Drive through to the Te Koha intersection.
 - Ti Rakau Drive being widened to the south of the existing road through the mainly residential area north west of the Pakuranga Creek Bridge.
 - The replacement and widening of Ti Rakau Bridge.
 - Ti Rakau Drive being widened approximately evenly on both sides of the road through the mainly commercial area South-East of the Pakuranga Creek Bridge.
 - In addition to the above, it has been identified that Riverhills Park (located within the EB3 footprint) may be utilised as a potential temporary laydown area to facilitate the construction of both Package EB2 and EB3 and the replacement and widening of Ti Rakau Bridge.

1.3 Objective

The objectives of the environmental assessment (contaminated land) were the following:

- Provide an understanding of the nature and extent of the current and historical Hazardous Activities and Industries List (HAIL) landuse activities within the vicinity of the proposed transport improvement works area, including the temporary laydown area.
- Provide a conceptual site model (CSM) including an exposure pathway assessment.
- Understand potential contaminant conditions of spoil materials scheduled for land disturbance as part of the proposed transport improvement works.
- Confirm contaminated land resource consent requirements under the following legislation:
 - Auckland Unitary Plan Operative in part (AUPOIP).
 - Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations, 2011 (NES Soil).
- Provide waste spoil classification advice for spoil materials to be disposed of off-site as part of the proposed transport improvement works.

1.4 Scope of Work

In order to meet the objective, the following scope of works was completed:

- Data Gap Review:
 - Review of the Phase 1 PSI for the Pakuranga Scheme Assessment of the Auckland Manukau Eastern Transport Initiative (AMETI) Alignment, prepared by GHD Limited (GHD), dated 7 December 2012.
 - Identification of data gaps (related to contaminated land aspects) considered pertinent to the proposed transport improvement works.
 - Review of the following data sources for the period between the issue of the GHD PSI report (December 2012) and the present day (August 2018):
 - Publicly available historical aerial photographs.
 - Auckland Council (AC) contaminated land enquiry.
- Intrusive Investigation:
 - Collection of environmental soil samples from six boreholes (advanced for geotechnical purposes) along the length of the proposed transport improvement works area.
 - Advancement of 21 environmental hand augers and collection of soil samples along the length of the proposed transport improvement works area.
 - Advancement of 12 environmental hand augers and collection of soil samples within in the proposed temporary laydown area.
 - Collection of environmental sediment samples at two locations adjacent to the Tamaki River.
 - Analysis of selected soil samples for a range of potential contaminants of concern including:
 - Heavy metals,
 - Total petroleum hydrocarbons (TPH),
 - Volatile organic compounds (VOCs),
 - Semi-volatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs) and pesticides,
 - Pentachlorophenol (PCP), and
 - Asbestos containing materials (ACM).
- Preparation of this environmental assessment report including:
 - Comparison of soil and sediment analytical results against relevant human health and environmental guideline criteria.
 - Identification of preliminary contaminated land resource consent requirements.
 - Provision of soil classification advice with respect to reuse or disposal.

1.5 **Project Exclusions**

It is acknowledged that a number of residential homes and commercial buildings, including service stations, will need to be demolished and removed in order for the EB2 and EB3 works programme to progress. Full hazardous materials surveys will need to be completed, with potential risks mitigated (i.e., removal of asbestos, decommissioning of underground storage tanks), prior to the commencement of the physical works programme. Further commentary on this matter is outside of the scope of this report.

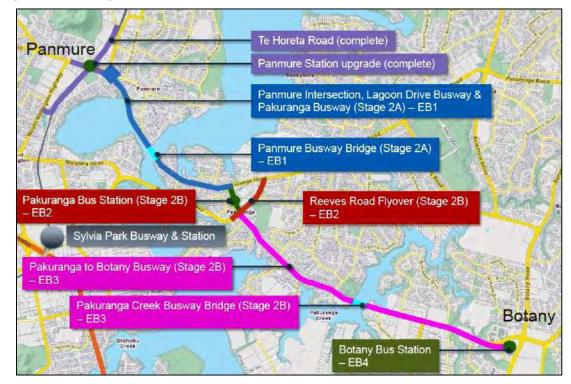


Figure 1 AMETI Stage 2B Location (sourced from tender documents)

2.0 Site and Environmental Setting

2.1 Site Description

Figure 1 presents an overview of the extent of EB2 and EB3. In summary:

- Package EB2:
 - The proposed location of the Pakuranga Bus Station is on Ti Rakau Drive near Pakuranga Town Centre. The area is generally level.
 - The proposed Reeves Road Flyover runs from Pakuranga Highway in the west across Ti Rakau Drive, along Reeves Road adjacent to William Roberts Road and joins Pakuranga Road to the north. The ground rises gently from Reeves Rd to Pakuranga Rd in the north through residential properties.
- Package EB3:
 - The proposed Pakuranga to Botany Busway runs along Ti Rakau Drive from the Mattson Road intersection to Te Irirangi Drive and includes the replacement and widening of Ti Rakau Bridge.
 - The road is generally level from Pakuranga Rd to Huntington Drive near the eastern end of the project where the alignment dips gently into two creek crossings. There are mangroves along the edge of Pakuranga Creek and its tributaries. Landuse is residential housing and open ground to Pakuranga Creek then commercial property to the end of the busway.
 - A temporary laydown area for the proposed works is located at Riverhills Park, situated on the corner of Ti Rakau Drive and Gossamer Drive; adjacent to the Ti Rakau Drive bridge. The majority of the area is an open grassed area currently used as recreational sports fields (soccer). The park is relatively flat, the carpark and ground on the western edge of the reserve risesgradually to meet Gossamer Drive. The ground drops down from the edge of the playing fields on the eastern side approximately 10 meters (m) to Pakuranga Creek..

2.2 Environmental Setting

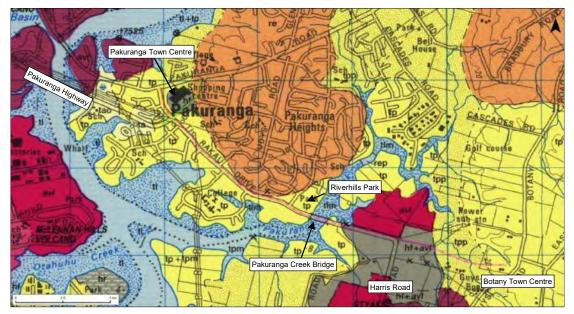
2.2.1 Geology

The published geological map of the area (Kermode, 1992), illustrates that the proposed transport improvement works area is underlain by seven mapped geological strata (refer **Figure 2**). A summary of the geological strata mapped along the routes is presented in **Table 1**. Refer to the first column of **Table 1** below for descriptions of mapped strata.

2.2.2 Hydrogeology

Beca Limited (Beca) reported on groundwater levels across the proposed transport improvement area for the months of July and August 2014. It was noted that groundwater was generally encountered between 2 m to 3 m below ground level (bgl).

GHD further noted that the entire transport improvement works area was underlain by a relatively shallow groundwater table (< 5 m bgl) that appeared to be generally consistent with topography (GHD, 2012). Given the proximity to coastal areas, regional groundwater flow is anticipated to be in a generally north, north east and north west direction towards the inner Waitemata Harbour. Localised groundwater flows will also be expected towards the Tamaki Basin, Tamaki River, and the Pakuranga Creek. Groundwater was encountered environmental assessment.


Groundwater was recorded at depths ranging from 0.7 to 3.3. m bgl as part of the AECOM environmental assessment (refer **Section 6**).

2.2.3 Ecology

The following potentially sensitive ecological receptors have been identified along the length of the proposed transport improvement works area:

- The Tamaki River within the vicinity of Ti Rakau Bridge and Riverhills Park
- A stream/creek to the north of the fuel service station at 386 Ti Rakau Drive.

Figure 2 Geological Map Extract 1:50,000 (Kermode, 1992)

Table 1	Mapped Geological Strata Summary

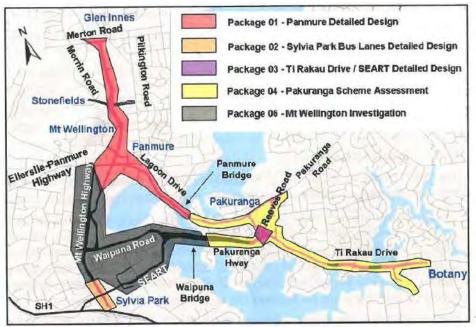
Strata Map Code	Strata Name	Strata Description	Approximate Locations
hf+avl	Construction Fill & Basalt Lava	Construction fill: re-compacted clay to gravel sized materials may include demolition debris. Basalt lava: grey, dense, fine grained lava	Ti Rakau Drive between Trugood Drive and Greenmount Drive, and around Pakuranga Town Centre
tlm	Intertidal Mud	Grey to black, indistinctly bedded	Beneath Pakuranga Creek Bridge
ta	Undifferentiated Alluvium	Mud, sand and gravel	Pakuranga Highway
avl	Basalt & Basanite Lava	Grey, dense, fine grained lava	North of Ti Rakau Drive between Burswood Drive and Harris Road
tp	Puketoka Formation	Pumiceous deposits: light grey to orange brown, pumiceous mud, sand and gravel with black muddy peat lignite	Pakuranga Highway, southern end of Reeves Road, Ti Rakau Drive between Pakuranga Town Centre and Trugood Drive
tpp	Puketoka Formation	Rhyolite pumice: light grey, massive to finely laminated, mud to sand sized pumice, includes non-welded ignimbrite, tephra and alluvial pumice deposits	Ti Rakau Drive between Greenmount Drive and Botany Town Centre
re	East Coast Bays Formation	Greenish grey, alternating muddy sandstone and mudstone with occasional interbedded lenses of grit	Pakuranga Heights, northern end of William Roberts Road

3.0 Gap Analysis

As part of the gap analysis a review of the GHD PSI was completed. The review was undertaken for the purposes of identifying data gaps (related to contaminated land aspects) considered pertinent to the proposed transport improvement works.

3.1 Summary Review

3.1.1 Background


GHD completed a PSI (2012) in support of the proposed Package 4 portion (running between Pakuranga and Botany) of the AMETI Alignment (detailed on **Figure 3**, hereinafter referred to in this section as 'the alignment').

The Package 4 Scheme Assessment is noted to comprise five segments, and these are summarised in **Table 2**Error! Reference source not found.. The entire Package 4 Scheme (including each of the five segments) forms the subject of the GHD PSI and encompasses packages EB2 and EB3 (which are the focus of this environmental assessment). The review of the GHD PSI indicates that Package 4 appears to generally align with packages EB2 and EB3 of the current AMETI programme.

Table 2 Package 4 Scheme Assessment

Segment	Description
One	Pakuranga Road between the eastern abutment of the Panmure Bridge and Ti Rakau Drive.
Two	Pakuranga Town Centre and immediate surrounding corridors. These include Pakuranga Road, between Ti Rakau Drive (including the Pakuranga Road intersection) and St Kentigerns signalised entrance; Ti Rakau Drive, between Pakuranga Road and Reeves Road (including the Reeves Road intersection); and Reeves Road, between William Roberts Road and Ti Rakau Drive.
Three	Ti Rakau Drive between Reeves Road and Gossamer Drive.
Four	Ti Rakau Drive between Gossamer Drive and Greenmount Drive.
Five	Ti Rakau Drive between Greenmount Drive and Botany Road.

Figure 3 AMETI Alignment Entire Scheme Assessment

Source: GHD, 2012.

3.1.2 Purpose

The GHD PSI was undertaken to support AT in meeting the requirements of the NES Soil. The NES Soil applies to any site where a potentially hazardous activity or industry (historically or current) is identified on the HAIL. As such, the objective of the GHD PSI was to assess the likelihood of the presence of soil contamination resulting from historic and/or current landuse activity within or adjacent to the alignment.

3.1.3 Scope

The GHD PSI comprised a review of information from the following sources:

- Draft alignment plans as of October 2012 developed by GHD/Aurecon.
- Publicly available historical aerial photographs from 1940 to 2010.
- Collection of photographs as part of a walkover.
- AC contaminated sites register.
- AC groundwater borehole register.
- Readily available site investigation reports resulting from site register search.
- Walkover inspection conducted on 26 September 2012.
- Readily available geology and hydrogeology information.
- Determination of surrounding landuses to assess potential environmental impacts from off-site sources.
- Identification of potential contaminants of concern.
- Publicly available information on the environmental fate of contaminants.
- Identification of sensitive human and/or environmental receptors.

3.1.4 Key Findings and Conclusions

The key findings and conclusions of the GHD PSI were as follows:

- Along the length of the alignment there are a number of geological units present with the most prominent being rhyolitic pumiceous deposits of the Tauranga Group.
- Engineered construction fill (likely comprising re-compacted clay/gravel and may include construction and demolition wastes) is noted to a large complex between Ti Rakau Drive and Pakuranga Road. Construction fill is also noted as a geological component to the industrial zone between Trugood Drive and Burswood Drive.
- A site contamination enquiry was completed seeking records from AC. A number of items were identified including pollution incidents, records of discharge consents, submittal of a tank pull report, submittal of two environmental site assessment (ESA) reports for service station facilities, and borehole installation records for environmental monitoring or investigation purposes at three sites (two service stations and one chemical supplier facility). The report notes that the two ESA reports were requested from AC but one was still outstanding at the time that the GHD PSI report was issued.
- A walkover identified no sensitive receptors in close proximity to the proposed transport improvement works area with the exception of the tributary of the Pakuranga Creek flowing at the back of the fuel service station located at 386 Ti Rakau Drive.
- Adjacent to the alignment up to twenty sites with landuses included on the HAIL were identified. It
 was stated that, given surface soils will be disturbed along the alignment corridor through
 significant soil disturbance the regulations of the NES Soil apply on the basis of HAIL category H
 adjacent sites. Category H is defined as 'any land that has been subject to the migration of
 hazardous substances from adjacent land in sufficient quantity that it could be a risk to human
 health or the environment'. The identified HAIL sites are detailed in Table 3.

The report recommended that the following are considered to minimise risks associated with contaminated land along the alignment:

- Obtain environmental site investigation reports from AC.
- Engage with AC contaminated site officers to present the planned strategy to assess potential contamination from adjacent sites.
- Undertake intrusive soil investigations to assess potential contamination along the project route, at locations where the adjacent landuse has been identified as having current or historic HAIL activities and where the likelihood of contamination has been assessed as medium to high.

Table 3 Summary of Identified HAIL Sites (GHD, 2012)

Site Name	Landuse Activity	HAIL Category
11 Cortina Place / 64B Ti Rakau Drive	Former Caltex branded service station, now a vacant site	F7 – Service stations including retail or commercial refuelling activities
Aylesbury Street, Pakuranga Town Centre	New Zealand Dry Cleaners	A5 – Dry-cleaning plants including dry-cleaning premises or the bulk storage of dry cleaning solvents
12 Cortina Place	Pakuranga Panel Beaters	F4 – Motor vehicle workshops
16 Cortina Place	Pakuranga Automotive	F4 – Motor vehicle workshops
16D Cortina Place	Pakuranga Auto Transport	F4 – Motor vehicle workshops
3 Reeves Road	Gull branded service station	F7 – Service stations including retail or commercial refuelling activities
242 Ti Rakau Drive	Mobil branded service station	F7 – Service stations including retail or commercial refuelling activities
269 Ti Rakau Drive	Sandvik Materials Technology (metal supplier/fabrication)	D5 – Engineering workshops with metal fabrication
279 Ti Rakau Drive	Former Timber Storage Yard	A18 – Wood treatment or preservation including the commercial use of anti-sapstain chemicals during milling, or bulk storage of treated timber outside
Corner Ti Rakau Drive and Burswood Drive	Z branded service station	F7 – Service stations including retail or commercial refuelling activities
179D Harris Road	Jireh Auto Tyres	F4 – Motor vehicle workshops
Corner Ti Rakau Drive and Harris Road	BP branded service station	F7 – Service stations including retail or commercial refuelling activities
293 Ti Rakau Drive	Forging Ahead (Foundry)	D2 – Foundry operations including the commercial production of metal products by injecting or pouring molten metal into moulds
333 Ti Rakau Drive	Blue n Green Dry Cleaners	A5 – Dry-cleaning plants including dry-cleaning premises or the bulk storage of dry cleaning solvents
380 Ti Rakau Drive	Howick and Eastern Bus Depot	F8 – Transport depots or yards including areas used for refuelling or the bulk storage of hazardous substances
386 Ti Rakau Drive	Gull branded service station	F7 – Service stations including retail or commercial refuelling

Site Name	Landuse Activity	HAIL Category
		activities
550 T Irirangi Drive	Z branded service station	F7 – Service stations including retail or commercial refuelling activities

3.2 Data Gap Summary

At the time of issue and given the associated status of the AMETI scheme at the time, the GHD PSI report would have been considered generally sufficient for the purposes of supporting the proposed transport improvement works. However, it is noted that the identified HAIL sites (**Table 3**) are outside of the current proposed transport improvement works area. Given that only shallow soils (i.e. up to 0.5 m bgl) are likely to disturbed as part of the current proposed works, the HAIL sites are not considered relevant as it is unlikely that they have contributed to the migration of hazardous substances in a sufficient quantity in shallow soils that could result in a risk to human health or the environment.

Even so, given the passage of time since the development of the GHD PSI report (almost six years), and the progression of the planning/design of the overall AMETI scheme, it is considered that there is scope for data gaps to exist with respect to understanding of potential risks associated with contaminated land.

To address the existence of potential data gaps the following sources were selected to be reviewed to specifically address the period between the issue of the GHD PSI report (December 2012) and the present day (August 2018):

- Publicly available historical and current aerial photographs.
- AC contaminated site enquiry.

A summary review of each of the above data sources is provided in Section 4.

4.0 Data Source Review

4.1 Aerial Photographs

Historical and current aerial photographs were obtained through the AC Geomaps online portal, the Retrolens online portal and Google Maps/Streetview 2018 imagery. In addition to covering the identified data gap period (December 2012 to present day) a review of aerial photographs was undertaken for the period 1939 through to the present day. This allowed for the determination of landuse changes and the identification of any pertinent items that have become apparent since December 2012 but also to allow for the identification of any pertinent landuses that may have been omitted during the development of the GHD PSI. The aerial photographs are included in **Appendix B**.

In addition to items identified by the GHD PSI the review of aerial photographs highlighted the following key items:

- On the 1968 aerial photograph there are buildings present to the south west of Ti Rakau Drive at the junction of the current Highway 10. A number of these buildings are no longer present on the 1972 aerial photograph as infilling of the current Highway 10 location to the south west of Ti Rakau Drive is evident.
- The 1980 aerial photograph records Highway 10 having been constructed.
- The site at 64B Ti Rakau Drive is noted as a former Caltex branded service station and 'vacant' in the GHD PSI. The site has been redeveloped and is now occupied by the 'Pakuranga Medical Centre' which comprises of a two-storey building and associated car park.
- The BP branded service station on the corner of Ti Rakau Drive and Harris Road (as noted in the GHD PSI) is now a car showroom and sales centre.
- Blue n Green Dry Cleaners noted as located at 333 Ti Rakau Drive in the GHD PSI appears to be currently located at 317 Ti Rakau Drive.
- Two reclaimed inlets of the Tamaki River were infilled between 1959 and 1996 (to form Riverhills Park).

4.2 Auckland Council Contaminated Site Enquiry

The AC contaminated site enquiry gathers information from the former Auckland Regional Council (ARC) records system and information currently held by the AC Natural Resources and Specialist Input Unit. Records include closed landfills, bores, air discharge, industrial and trade process consents, contaminated site discharge consents, and environmental assessments within approximately 200 m either side of the proposed transport improvement works area. A copy of the report (for the period 2012 to present day) is provided in **Appendix C**.

The report identified the following:

- There are three closed landfill sites within the vicinity of the Site which are noted as being located at Riverhills Park, Ti Rakau Park and Dale Crescent.
- Records of two discharge consents for the site at 11 Cortina Place/64B Ti Rakau Drive for a former petrol filling station. The consents relate to closure of the site and discharge to land and water from remediation of contaminated land, and are dated April 2011 and March 2016, respectively.
- Five sites identified as included on the HAIL for what appears to be reasons of contamination. Four of the sites appear to be aligned to the locations of the three closed landfills detailed above with the fifth location recorded as a site approximately 125 m to the south west of Ti Rakau Drive.

5.0 Intrusive Works Methodology

5.1 Areas of Potential Concern and Investigation Rationale

The review of the GHD PSI and current/more recent historical information, along with the proposed transport improvement activities has highlighted the following:

- An activity or industry included on the HAIL has more likely than not (historical), and is not currently being undertaken along the length of the proposed transport improvement works area.
- Soil disturbance activities (albeit shallow) are anticipated as part of the proposed works. As such there is a need to understand potential soil contaminant conditions where soil disturbance works are anticipated.
- Sediment disturbance activities are anticipated as part of the proposed works. As such there is a need to understand potential sediment contaminant conditions where soil disturbance works are anticipated.

Based on the above, the AECOM environmental assessment focussed on the collection of soil and sediment samples for laboratory analysis from materials within anticipated areas of soil disturbance.

5.2 Environmental Soil and Sediment Sampling

Table 4 presents a summary of the works completed between April and August 2019 and in February2019. Investigation locations are presented on Figure 4 in Appendix A.

Table 4	Summary of Field Methodologies
---------	--------------------------------

Scope of Works Completed	Methodology
Service Mark-out	 Prior to mobilising, before you dig searches of relevant services were conducted by AECOM staff and locations were chosen to avoid these services. Onsite service location was carried out by Underground Service Locators (USL) under AECOM supervision, using a ground penetrating radar (GPR) and cable avoidance tool (CAT) scanner. Once excavation locations had been cleared by USL approval for breaking ground was cleared by an AECOM service identification and clearance (SIC) approver in discussion with the AECOM site supervisor.
Borehole advancement	 Six boreholes (locations DH102 to DH104 and DH107 to DH109) advanced as part of the AECOM geotechnical investigation. Initial progression (as part of service clearance requirements) utilised hydrovac excavation processes to depths of up to 2 m bgl. Environmental sampling was conducted during this process.
Hand auger advancement	 21 hand augured boreholes (locations EHA101 to EHA108 and EHA111 to EHA123) were advanced for the purposes of environmental sampling to depths of up to 3.4 m bgl along EB2 and EB3. 12 hand augured boreholes (locations HA1 to HA12) were advanced or environmental sampling to depths of up to 5 m bgl within Riverhills Park.
Soil and sediment sample collection	 During the advancement of the boreholes and hand augers, 135 soil samples were collected for potential laboratory analysis. Field screening of select soil samples was completed with a photoionisation detector (PID) for VOCs. Collection of two sediment samples adjacent to Ti Rakau Bridge. Samples were placed directly into laboratory supplied containers and stored on ice in a chilled container while onsite and during transit to either Hill Laboratories Limited (Hills) or Analytica Laboratories Limited (Analytica). Samples were transported to the laboratories under standard AECOM chain of custody (CoC) procedures. To prevent cross contamination, a new pair of disposable nitrile gloves was used for each soil sample collected and the hand auger was decontaminated between each sample and between boreholes using a three-step process involving Decon90 and

Scope of Works Completed	Methodology
	 potable water. Selected soil samples were analysed for a range of potential contaminants as detailed in Table 5. The two sediment samples were analysed for heavy metals, TPH, PAHs and asbestos. Spoil generated during the advancement of the works was reinstated at the completion of soil sampling.

Table 5 Soil Sample Analysis

Analyte	No. of Samples Analysed
Heavy Metals	52
Total Petroleum Hydrocarbons (TPH)	22
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	10
Polycyclic Aromatic Hydrocarbons (PAH) (other than as part of the SVOC suite)	10
Volatile Organic Compounds (VOC)	11
Semi-Volatile Organic Compounds (SVOC)	11
Pentachlorophenol (PCP)	1
Pesticides (other than as part of the SVOC suite)	3
Asbestos (screen for presence/absence of fibres)	16

6.0 Intrusive Works Results

6.1 Field Observations

Key observations recorded as part of the environmental assessment are summarised below, with copies of borehole logs DH102 to DH109, EHA101 to EHA108, EHA111 to EHA123 and HA1 to HA12 provided in **Appendix D**. In summary:

- Aside from two investigation locations (DH108 and EHA101), where a gravel surface was
 present, observed surface coverings at the investigation locations comprised topsoil (generally
 comprising brown sandy silt).
- Fill (generally comprising reworked material) was encountered at the majority of locations (to a maximum depth of 3 m bgl). The exceptions to this were in the vicinity of the Pakuranga Highway/Ti Rakau Drive junction, adjacent to Ti Rakau Drive between Roseburn Place and Edgewater Drive, and adjacent to 279 Ti Rakau Drive, where clayey silt was recorded.
- At depth, silt (with varying components of sand and clay) was recorded at all investigation locations.
- No significant visual or olfactory evidence of contamination was recorded as part of this investigation.
- No refuse was observed in boreholes advanced across Riverhills Park.
- Groundwater was encountered in approximately half of the investigation locations. Groundwater was recorded at depths ranging from 0.7 to 3.3. m bgl. Refer to **Table 6** for a summary.
- Sediment samples collected from the Tamaki Strait adjacent to Ti Rakau Bridge comprised saturated brown/grey silty clay including the presence of rootlets.

Table 6	Summary of Groundwater Level Recordings
---------	---

Environmental Assessment Location	Date Advanced	Recorded Groundwater Depth (metres below ground level)	Total Depth of Borehole (metres below ground level)
DH102	May 2018	2.2	2.2
DH103	May 2018	Not observed	2.0
DH104	May 2018	1.6	1.6
DH107	May 2018	Not observed	2.0
DH108	May 2018	Not observed	3.4
DH109	May 2018	Not observed	2.0
EHA101	August 2018	0.7	1.5
EHA102	August 2018	1.7	2.0
EHA103	August 2018	1.8	2.0
EHA104	August 2018	1.0	2.0
EHA105	August 2018	1.3	2.0
EHA106	August 2018	Not observed	2.8
EHA107	August 2018	1.6	2.0
EHA108	August 2018	3.3	3.4
EHA110	August 2018	1.9	2.0
EHA111	August 2018	Not observed	2.0
EHA112	August 2018	1.2	3.0

Environmental Assessment Location	Date Advanced	Recorded Groundwater Depth (metres below ground level)	Total Depth of Borehole (metres below ground level)
EHA113	August 2018	Not observed	2.0
EHA114	August 2018	Not observed	1.6
EHA115	August 2018	Not observed	0.7
EHA116	August 2018	1.0	2.0
EHA117	August 2018	Not observed	2.8
EHA118	August 2018	Not observed	2.5
EHA119	August 2018	1.2	3.0
EHA120	August 2018	Not observed	2.0
EHA121	August 2018	Not observed	2.0
EHA122	August 2018	Not observed	1.5
EHA123	August 2018	1.2	2.0
HA1	February 2019	Not observed	3.0
HA2	February 2019	2.6	4.5
HA3	February 2019	Not observed	3.0
HA4	February 2019	Not observed	4.1
HA5	February 2019	2.1	3.0
HA6	February 2019	1.4	3.0
HA7	February 2019	Not observed	3.0
HA8	February 2019	2.5	3.0
HA9	February 2019	Not observed	3.0
HA10	February 2019	2.6	5.0
HA11	February 2019	2.5	4.2
HA12	February 2019	2.5	3.0

6.2 Adopted Acceptance Criteria

The adopted acceptance criteria for soil quality results have been adopted in accordance with the hierarchy defined by Ministry for the Environment Contaminated Land Management Guidelines No.2 (MfE, 2003, revised 2011) and are summarised below:

- Soil:
 - Resource Management Act (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations, 2011. Soil contaminant standards for commercial / industrial outdoor worker (unpaved) landuse scenario have been adopted allowing for exposure of workers during any ground disturbance activities associated with the proposed development. Hereinafter referred to as the **NES SCS**.
 - Auckland Council, 2017. Auckland Unitary Plan (Operative in Part) (AUPOiP). Reference Table E30.6.1.4.1 Permitted Activity Soil Acceptance Criteria. Hereinafter referred to as the **AC Permitted Activity Criteria**.
 - Auckland Council, 2017. AUPOiP. Reference Table E30.6.1.4.2 Background ranges of trace elements in Auckland soils sources from Table 3 of TP153:2001 Background Concentrations of Inorganic Elements in Soils from the Auckland Region. Background ranges for naturally

occurring heavy metal concentrations in non-volcanic range soils were adopted. Hereinafter referred to as the **Auckland Background Concentrations**.

- MfE, 1999 (revised 2011). Guidelines for Assessing and Managing Petroleum Hydrocarbon contaminated Sites in New Zealand. Tier 1 soil acceptance criteria for petroleum hydrocarbon concentrations in soil under a commercial / industrial outdoor worker (unpaved) landuse scenario. Hereinafter referred to as the **Oil Industry Guidelines**.
- Sediment:
 - Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000 (updated 2018): Revised toxicant default guideline values for sediment quality (Table 1). Hereinafter referred to as the Sediment Quality Guidelines (SQG) Default Guideline Values (DGV) and Upper Guideline Values (UGV).

6.3 Analytical Results

Analytical results for heavy metals in shallow soils and the sediment sample results are summarised in **Table G1** and **Table G2** in **Appendix G**. TPH, BTEX, VOCs, SVOCs, PCP, pesticides and asbestos are not summarised in the tables as these analytes were not detected above the method detection limited (MDL) during laboratory analysis, or were only recorded at trace levels in a minimal number of locations. Full results however, are presented in the associate laboratory certificates (**Appendix H**). Key findings of the analysis of soil materials are summarised as follows:

- No exceedances of the NES SCS or AC Permitted Activity Criteria were recorded.
- A number of heavy metals were detected at concentrations exceeding Auckland Background Concentrations. A summary of these results is provided in **Table 7**.
- The presence of asbestos was not detected in any of the samples analysed.
- Organic compounds were only recorded at a concentration which exceeded the MDL in two of 62 samples analysed as part of this investigation.
 - One soil sample collected from 0.5 m bgl in EHA106 recorded a benzo(a)pyrene (BaP) toxic equivalency (TEQ) of 7.7 mg/kg. The recorded concentration did not exceed the adopted acceptance criteria.
 - One soil sample collected from 0.2 m bgl in HA9 recorded a minor detection of TPH of 62 mg/kg. The recorded concentration did not exceed the adopted acceptance criteria.
- One sediment sample (SEDIMENT 01) recorded lead, nickel and zinc at concentrations which
 marginally exceeded the SQG DGV whilst the other sediment sample (SEDIMENT 02) recorded
 zinc at concentrations which marginally exceeding the SQG DGV. Sediment sample SEDIMENT
 01 also recorded TPH concentrations which marginally exceeded the SQG UGV.

Table 7 Summary of Heavy Metals Results and Auckland Background Concentrations

	No. of	Auckland Background Concentration	Recorded	Number of		
Analyte	Samples Analysed	(Non-Volcanic Range) (mg/kg)	Minimum	Maximum	Average	Exceedances
Arsenic		0.4 – 12	<2	6.48	2.57	0
Cadmium		<0.1 – 0.65	<0.10	0.6	0.06	0
Chromium		2 – 55	3.0	51.0	25.5	0
Copper	52	1 – 45	3.0	50.0	10.63	1
Lead		<5 – 65	4.8	103.0	14.11	2
Nickel		0.9 – 35	4.0	61.0	16.90	4
Zinc		9 – 180	5	157	32.24	0

6.4 Quality Assurance and Quality Control

Refer to **Appendix E** for a summary of QA/QC procedures. The QA/QC procedures employed indicate that the reported analytical results are representative of shallow soil conditions at the sample locations and that the overall quality of the analytical data produced is acceptably reliable for the purpose of this investigation.

7.0 Discussion

7.1 Conceptual Site Model

Based on the results of the investigation a basic CSM has been developed for the completion of land disturbance activities within the proposed transport improvement works area. In summary:

- The review of available information indicates that a HAIL activity or industry has more likely than not (historical), and is not currently being undertaken within the piece of land covered by this assessment (i.e., the proposed transport improvement works area).
- A soil sampling exercise was completed to provide a preliminary understanding of contaminant conditions along the length of the proposed transport improvement works area including the proposed temporary laydown area.
- Observed shallow soil conditions generally comprised fill (largely reworked material) at the majority of locations (to a maximum depth of 3 m bgl). The exceptions to this were in the vicinity of the Pakuranga Highway/Ti Rakau Drive junction, adjacent to Ti Rakau Drive between Roseburn Place and Edgewater Drive, and adjacent to 279 Ti Rakau Drive, where clayey silt was recorded. At depth, silt (with varying components of sand and clay) was recorded at all investigation locations.
- The results of the soil sampling programme completed as part of this assessment indicate that the disturbance of soil and sediment materials within the proposed transport improvement works area are unlikely to present a risk to human health or the environment during the works programme. No exposure pathways are considered to be complete. Importantly:
 - No exceedances of the NES SCS or AC Permitted Activity Criteria were recorded.
 - The presence of ACM was not detected in any of the samples analysed.

7.2 Regulatory Assessment (Contaminated Land)

7.2.1 National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (NES)

This assessment concludes that the NES Soil does not apply (Regulation 5[9]) to land disturbance within the proposed transport improvement works area. No HAIL activities undertaken adjacent to or within the piece of land covered by this assessment have impacted soil quality within the proposed land disturbance areas in a sufficient quantity that could result in a risk to human health or the environment.

7.2.2 Auckland Unitary Plan Operative in Part (AUPOiP)

This assessment concludes that the proposal meets the requirements of Permitted Activity Standard E30.6.1.4 and consent is not required. The results of the DSI have indicated that the concentration of contaminants in soil do not exceed the Permitted Activity Criteria.

7.3 Spoil Reuse and Disposal Recommendations

Spoil materials generated as part of land disturbance activities can be reused as required. However, it is anticipated that soil will need to be removed from the transport improvement works area. This soil should be disposed of at a licensed facility. With the contaminant concentrations detected being generally low, the soil could potentially be disposed of as cleanfill or managed fill; subject to meeting the disposal facility's consented waste acceptance criteria.

7.4 Site Management Planning

Although the potential risk of encountering significantly impacted soil materials during the proposed transport improvement works is considered low, it is appropriate that a Site Management Plan (SMP) be provided to the Contractor engaged to complete the physical works programme. The intent of this plan would be to provide guidance and procedures should unexpected soil contamination be encountered.

8.0 References

Auckland Council, 2017. Auckland Unitary Plan Operative in Part, September 2017.

Auckland Regional Council, 2001. Background Concentrations of Inorganic Elements in Soils from the Auckland Region. Technical Publication 153.

Beca Limited, 2014. AMETI Reeves Road Flyover - Geotechnical Factual Report.

Beca Limited, 2014. AMETI Reeves Road Flyover- Geotechnical Interpretive Report.

Building Research Advisory Council New Zealand, 2017. New Zealand Guidelines for Managing and Assessing Asbestos in Soil (referred to as NZBRANZ Guidelines).

GHD Limited, 2012. AMETI Package 04: Pakuranga Road, Ti Rakau Drive and Reeves Road, including Rapid Transport Network - Geotechnical Interpretative Report.

Kermode, L, 1992. Geology of the Auckland urban area. Scale 1:50 000. Institute of Geological & Nuclear Sciences geological map 2. 1 sheet + 63 p. Institute of Geological & Nuclear Sciences Ltd. Lower Hutt, New Zealand.

Ministry for the Environment, 2001. Contaminated Land Management Guidelines No. 1. Reporting on Contaminated Sites in New Zealand. Revised 2011.

Ministry for the Environment, 2003. Contaminated Land Management Guidelines No. 2. Hierarchy and Application in New Zealand of Environmental Guideline Values. Revised 2011.

Ministry for the Environment, 2004. Contaminated Land Management Guidelines No. 5. Site Investigation and Analysis of Soils. Revised 2011.

Ministry for the Environment, 2011. Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations, 2011.

Ministry for the Environment, 2012. Users' Guide, National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health.

Western Australian Department of Health, 2009. Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.

9.0 Limitations

The information contained in this document was produced by AECOM New Zealand Limited for the sole use of Auckland Council (the Client).

AECOM has used its reasonable endeavours to ensure that this document is based on information that was current as of the date of the document. AECOM's findings represent its reasonable judgments within the time and budget context of its commission and utilising the information available to it at the time.

AECOM has relied on information provided by the Client and by third parties (Information Providers) to produce this document and arrive at its conclusions. AECOM has not verified information provided by the Information Providers (unless specifically noted otherwise) and we assume no responsibility and make no representations with respect to the adequacy, accuracy or completeness of such information. No responsibility is assumed for inaccuracies in reporting by the Information Providers including, without limitation, by the Client's employees or representatives or for inaccuracies in any other data source whether provided in writing or orally used in preparing or presenting the document.

Neither AECOM nor its parent corporation, or its affiliates (a) makes any warranty, expressed or implied, with respect to the use of any information or methods disclosed in this document or (b) assumes any liability with respect to the use of any information or methods disclosed in this document.

Subject to AECOM's obligations to its client and any authorised third parties under their contract:

- Any other recipient of this document, by their acceptance or use of this document, releases AECOM, its parent corporation and its and their affiliates from any liability for direct, indirect, consequential or special loss or damage whether arising in contract, warranty, express or implied, tort or otherwise, and irrespective of fault, negligence and strict liability.
- AECOM undertakes no duty to, nor accepts any responsibility to, any other party who may use or rely upon this document unless otherwise agreed to by AECOM in writing (including, without limitation, in the form of a reliance letter) herein or in a separate document.
- Any other party who is entitled to rely on this document may do so only on the document in its entirety and not on any excerpt or summary. Entitlement to rely upon this document is conditional upon the entitled party accepting full responsibility and not holding AECOM liable in any way for any impacts on the development of the Site arising from changes in "external" factors such as changes in government policy or changes in the owner's policy affecting the operation of the project.

This document may include "forward-looking statements". These statements relate to AECOM's expectations, beliefs, intentions or strategies regarding the future. These statements may be identified by the use of words like "anticipate," "believe," "estimate," "expect," "intend," "may," "plan," "project," "will," "should," "seek," and similar expressions. The forward-looking statements reflect AECOM's views and assumptions with respect to future events as of the date of this document and are subject to future conditions, and other risks and uncertainties, including but not limited to economic and political conditions and sovereign risk. Circumstances and events will occur following the date on which such information was obtained that are beyond AECOM's control or knowledge and which may affect the findings or projections contained in this document. We may not be held responsible for such circumstances or events and specifically disclaim any responsibility therefore.

No section or element of this document may be removed, reproduced, electronically stored or transmitted in any form by parties other than those for whom the document has been prepared without the written permission of AECOM. All sections in this document must be viewed in the context of the entire document including, without limitation, any assumptions made and disclaimers provided. No section in this document may be excised from the body of the document without AECOM's prior written consent.

From a technical perspective, the subsurface environment at any Site may present substantial uncertainty. It is a heterogeneous, complex environment, in which small subsurface features or changes in geologic conditions can have substantial impacts on water, vapour and chemical movement. Uncertainties may also affect source characterisation, assessment of chemical fate and transport in the environment, assessment of exposure risks and health effects, and remedial action performance.

Appendix A

Figures

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Sca	ile:		1:2,000 (A3 size)			
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection.

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

Approved	ET	Date	16/10/2018
Checked	CS	Date	16/10/2018
Designed	SS	Date	16/10/2018
Drawn	SS	Date	16/10/2018

ISSUE/REVISION

Α	16/10/2018	DRAFT
Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE ENVIRONMENTAL ASSESSMENT (CONTAMINATION) PAGE 1 of 9

MAP NUMBER

FIGURE 4A

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Sca	ile:		1:2,000 (A3 size)			
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection.

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

Approved	ET	Date	16/10/2018
Checked	CS	Date	16/10/2018
Designed	SS	Date	16/10/2018
Drawn	SS	Date	16/10/2018

ISSUE/REVISION

_		
Α	16/10/2018	DRAFT
Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE ENVIRONMENTAL ASSESSMENT (CONTAMINATION) PAGE 2 of 9

MAP NUMBER

FIGURE 4B

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Sca	le:		1:2,000 (A3 size)			
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection.

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

Approved	ET	Date	16/10/2018
Checked	CS	Date	16/10/2018
Designed	SS	Date	16/10/2018
Drawn	SS	Date	16/10/2018

ISSUE/REVISION

Α	16/10/2018	DRAFT
Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE ENVIRONMENTAL ASSESSMENT (CONTAMINATION)

PAGE 3 of 9 MAP NUMBER

FIGURE 4C

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Sca	le:		1:2,000 (A3 size)			
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection.

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

ET	Date	16/10/2018
CS	Date	16/10/2018
SS	Date	16/10/2018
SS	Date	16/10/2018
	CS SS	CS Date SS Date

ISSUE/REVISION

_		
Α	16/10/2018	DRAFT
Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE ENVIRONMENTAL ASSESSMENT (CONTAMINATION) PAGE 4 of 9 MAP NUMBER

FIGURE 4D

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Sca	ile:		1:2,00	(A3 siz	e)	
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection.

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

Approved	ET	Date	16/10/2018
Checked	CS	Date	16/10/2018
Designed	SS	Date	16/10/2018
Drawn	SS	Date	16/10/2018

ISSUE/REVISION

_		
Α	16/10/2018	DRAFT
Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE ENVIRONMENTAL ASSESSMENT (CONTAMINATION) PAGE 5 of 9 MAP NUMBER

FIGURE 4E

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Sca	ıle:		1:2,00) (A3 siz	e)	
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

-			
Approved	ET	Date	20/03/2019
Checked	CS	Date	20/03/2019
Designed	SS	Date	20/03/2019
Drawn	SS	Date	20/03/2019

ISSUE/REVISION

A 20/03/2019 DRAFT			
A 20/03/2019 DRAFT			
	Α	20/03/2019	DRAFT
Rev Date Description	Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE

ENVIRONMENTAL ASSESSMENT (CONTAMINATION) PAGE 6 of 9 MAP NUMBER

FIGURE 4F

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Sca	le:		1:2,00	(A3 siz	e)	
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

ET	Date	16/10/2018
CS	Date	16/10/2018
SS	Date	16/10/2018
SS	Date	16/10/2018
	CS SS	CS Date SS Date

ISSUE/REVISION

_		
Α	16/10/2018	DRAFT
Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE ENVIRONMENTAL ASSESSMENT (CONTAMINATION) PAGE 7 of 9 MAP NUMBER

FIGURE 4G

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Sca	le:		1:2,00	(A3 siz	e)	
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

ET	Date	16/10/2018
CS	Date	16/10/2018
SS	Date	16/10/2018
SS	Date	16/10/2018
	CS SS	CS Date SS Date

ISSUE/REVISION

_		
Α	16/10/2018	DRAFT
Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE ENVIRONMENTAL ASSESSMENT (CONTAMINATION) PAGE 8 of 9 MAP NUMBER

FIGURE 4H

AUCKLAND TRANSPORT AMETI EASTERN BUSWAY 2 AND 3

CLIENT

CONSULTANT

AECOM New Zealand Limited www.aecom.com

SPATIAL REFERENCE

Scale:			1:2,000 (A3 size)			
20	10	0	20	40	60	80
						m

Map features depicted in terms of NZTM 2000 projection

Data Sources: Cadastral Boundaries – LINZ NZ Cadastral Dataset 2018

PROJECT MANAGEMENT

Approved	ET	Date	16/10/2018
Checked	CS	Date	16/10/2018
Designed	SS	Date	16/10/2018
Drawn	SS	Date	16/10/2018

ISSUE/REVISION

_		
Α	16/10/2018	DRAFT
Rev	Date	Description

KEY PLAN

PROJECT NUMBER 60563280 SHEET TITLE ENVIRONMENTAL ASSESSMENT (CONTAMINATION) PAGE 9 of 9 MAP NUMBER

FIGURE 4I

Appendix **B**

Aerial Photographs

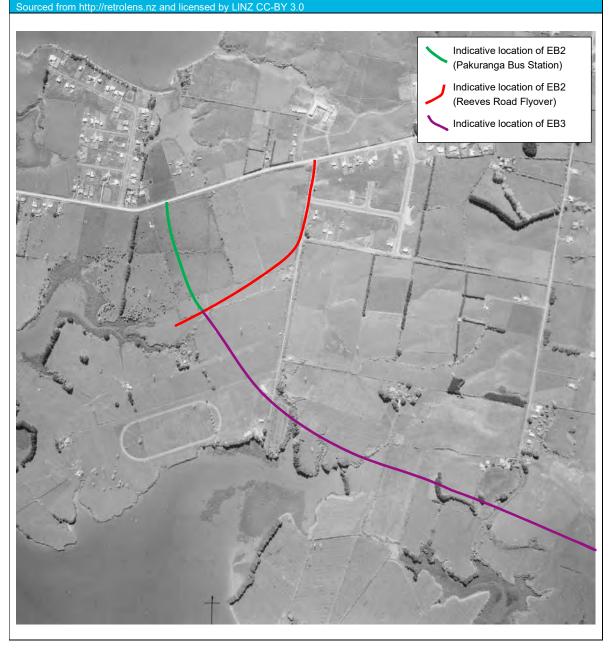
Appendix B Aerial Photographs

Package EB2 and EB3

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT


Date: 1940


AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

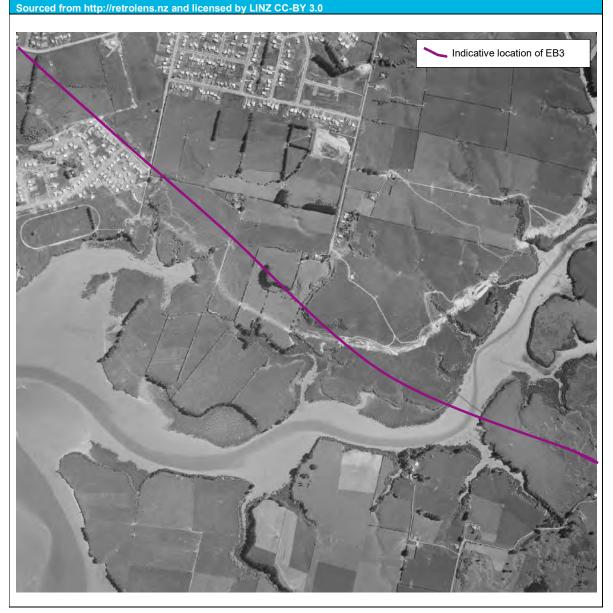
DRAFT

Date: 14/04/1940

Date: 09/09/1955

Date: 09/09/1955

Sourced from http://retrolens.nz and licensed by LINZ CC-BY 3.0 Indicative location of EB3


AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Date: 1959

Date: 02/11/1961

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Date: 02/11/1961

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Date: 28/09/1968

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Date: 14/04/1972

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Date: 28/04/1977

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

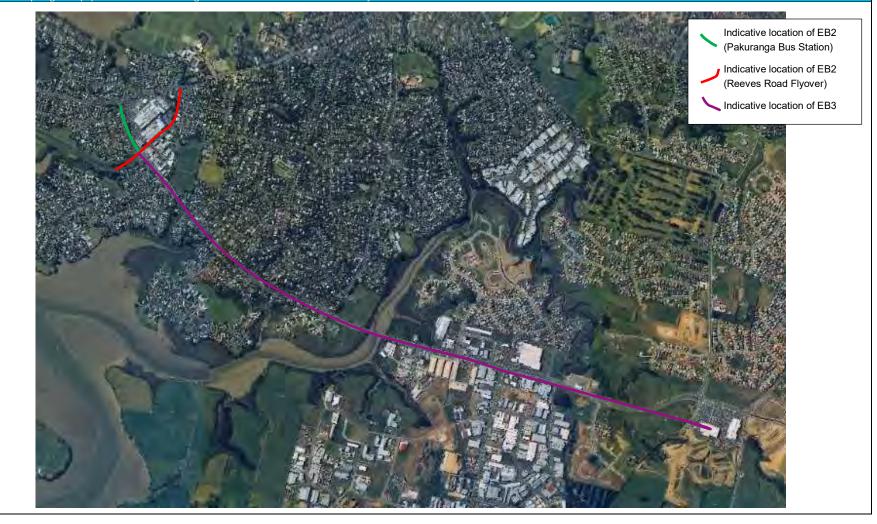
Date: 24/10/1980

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Date: 04/07/1995

Sourced from http://retrolens.nz and licensed by LINZ CC-BY 3.0

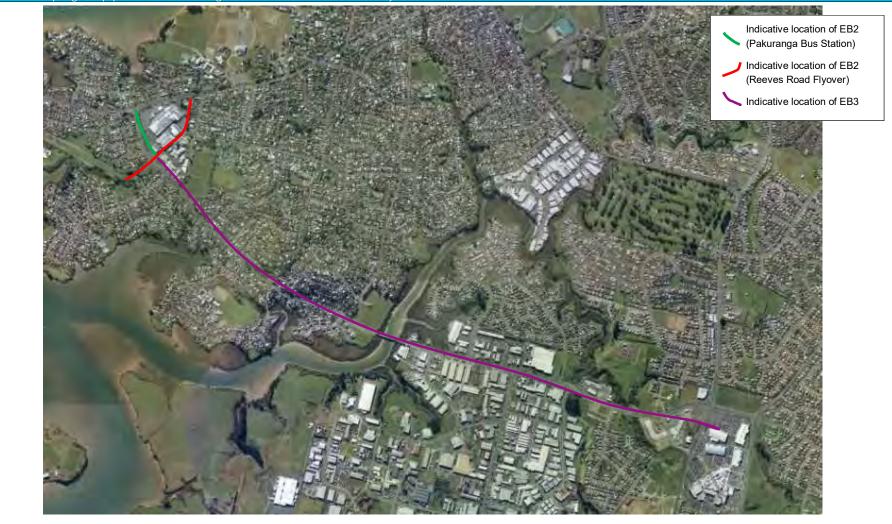

Revision A – 15-Apr-2019 Prepared for – Auckland Transport – Co No.: N/A

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Date: 1996

Sourced from https://geomapspublic.aucklandcouncil.govt.nz/viewer/index.html and owned by / licensed to Auckland Council



B-1

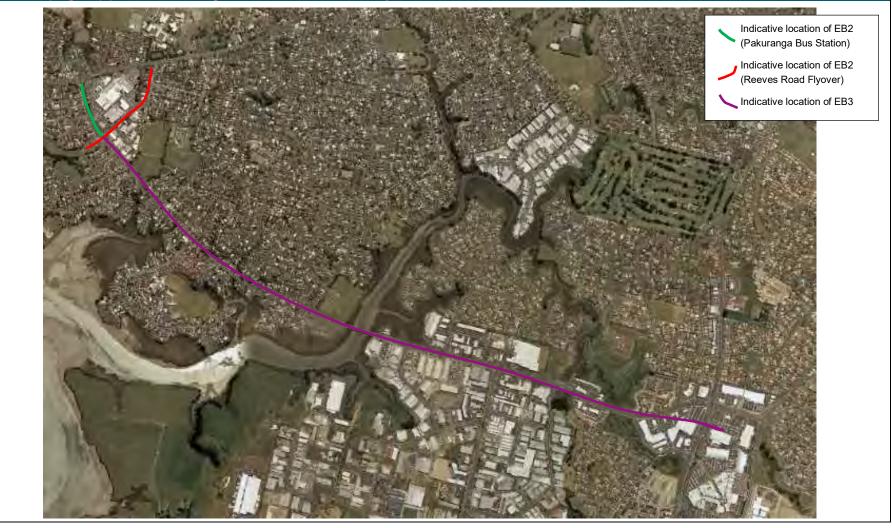
AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT


Date: 2001

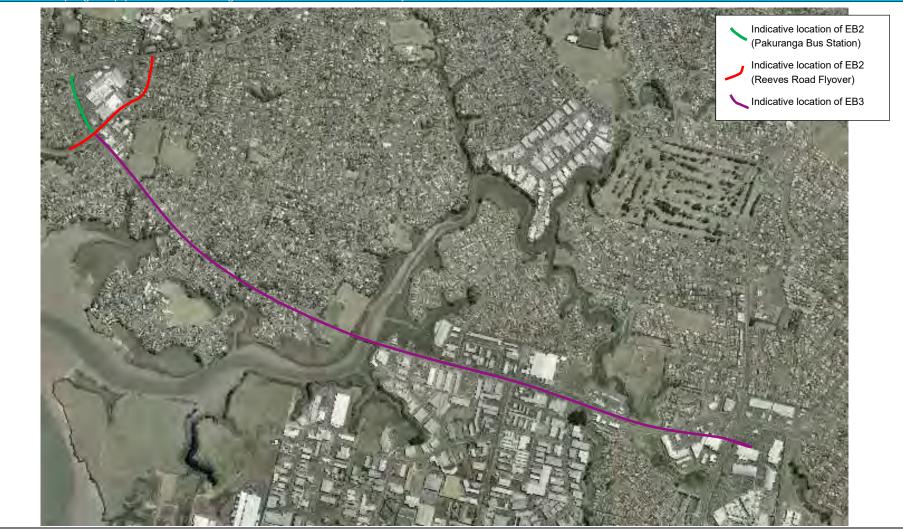
AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT


Date: 18/11/2003

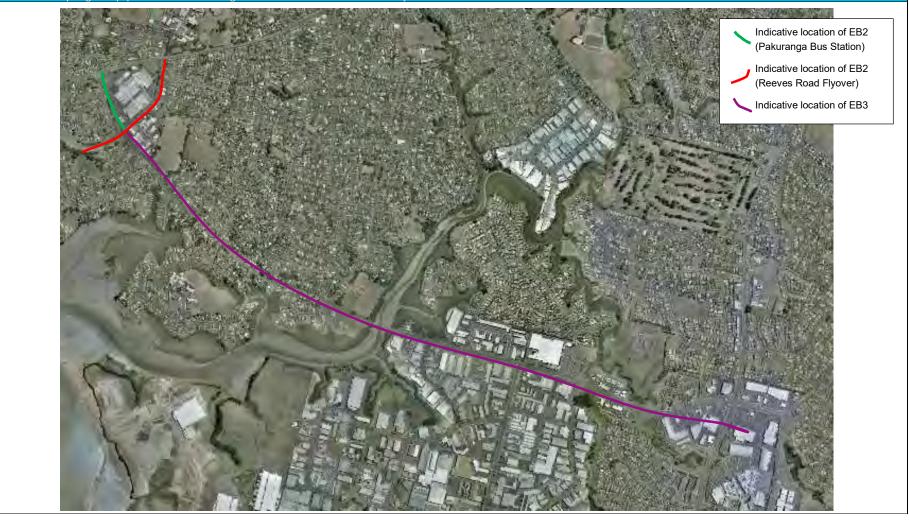
AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT


Date: 2003/2004

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT


Date: 2006

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

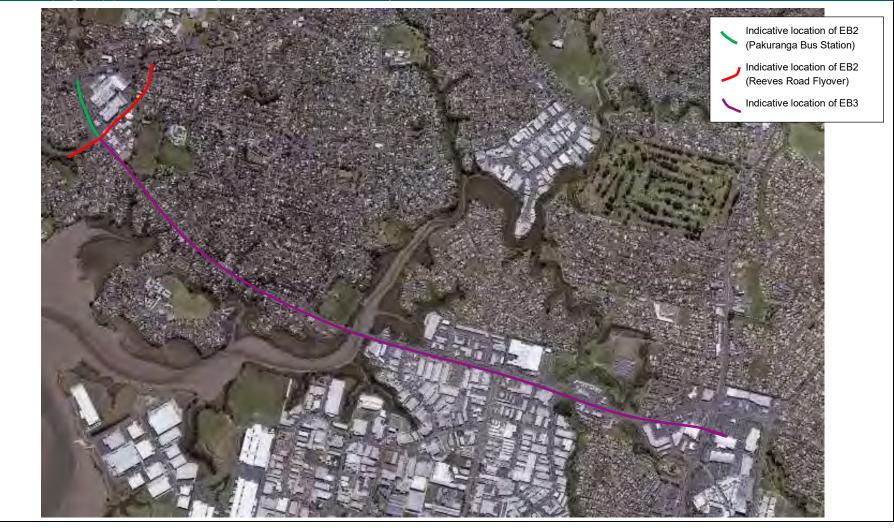
DRAFT

Date: 2008

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

Date: 2010/2011

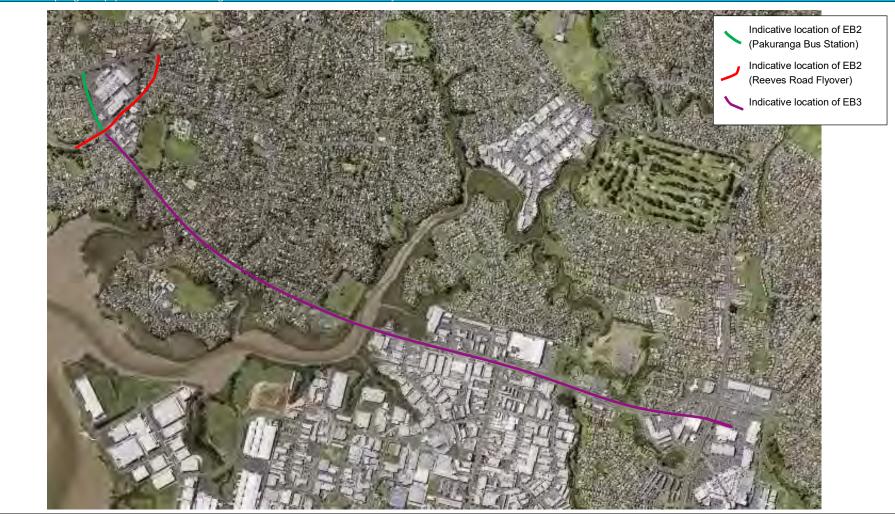

AECOM

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT

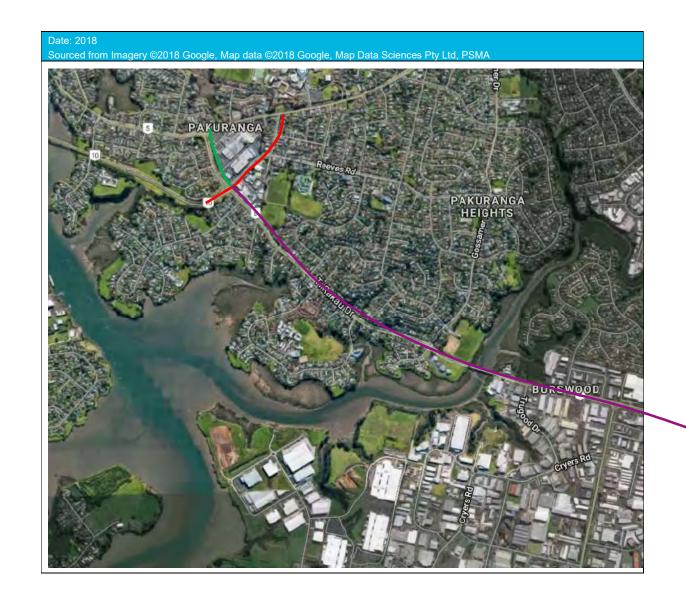
Date: 2015/2016

Sourced from https://geomapspublic.aucklandcouncil.govt.nz/viewer/index.html and owned by / licensed to Auckland Council


AECOM

AMETI Eastern Busway 2 and 3 Design and Consenting Draft Environmental Assessment (Contamination)

DRAFT


Date: 2017

Sourced from https://geomapspublic.aucklandcouncil.govt.nz/viewer/index.html and owned by / licensed to Auckland Council

B-1

DRAFT

Riverhills Park

Reference	Photograph
Date: 1959 Sourced from: Auckland Council GeoMAPS (Red line is only an indication of the Site boundary)	A N
Date: 1996 Sourced from: Auckland Council GeoMAPS (Red line is only an indication	
Date: 2001 Sourced from: Auckland Council GeoMAPS (Red line is only an indication of the Site boundary)	

DRAFT

Reference	Photograph
Date: 2006 Sourced from: Auckland Council GeoMAPS (Red line is only an indication of the Site boundary)	
Date: 2008 Sourced from: Auckland Council GeoMAPS (Red line is only an indication of the Site boundary)	
Date: 2017 Sourced from: Auckland Council GeoMAPS (Red line is only an indication of the Site boundary)	

AECOM

DRAFT

Appendix C

Data Searches

14 June 2021

Aecom NZ Limited OI Box 4241 AUCKLAND 1140 Attention: Kerryn Mclellan

Dear Kerryn

Site Contamination Enquiry – Ti Rakau Drive

This letter is in response to your enquiry requesting available site contamination information within Auckland Council records for the above site. Please note this report does not constitute a site investigation report; such reports are required to be prepared by a (third-party) Suitably Qualified and Experienced Practitioner.

The following details are based on information available to the Contamination, Air & Noise Team in the Resource Consent Department. The details provided may be from former regional council information, as well as property information held by the former district/city councils. For completeness the relevant property file should also be requested to obtain all historical records and reports via 09 3010101 or online at:

https://www.aucklandcouncil.govt.nz/buying-property/order-property-report/Pages/order-property-file.aspx.

1. Hazardous Activities and Industries List (HAIL) Information

This list published by the Ministry for the Environment (MfE) comprises activities and industries that are considered likely to cause land contamination as a result of hazardous substance use, storage, and/or disposal.

Council's records indicate the following sites have possibly been subject to activities that fall within the HAIL:

- 168R Gossamer Drive, Pakuranga Heights
- 33R Edgewater Drive, Pakuranga
- 27R William Roberts Road, Pakuranga

Please see the tab 'Property Notes From SAP' within Attachment A for more information.

Please note:

- If you are demolishing any building that may have asbestos containing materials (ACM) in it, you have obligations under the Health and Safety at Work (Asbestos) Regulations 2016 for the management and removal of asbestos, including the need to engage a Competent Asbestos Surveyor to confirm the presence or absence of any ACM.
- Paints used on external parts of properties up until the mid-1970's routinely contained lead, a
 poison and a persistent environmental pollutant. You are advised to ensure that soils affected
 by old, peeling or flaking paint are assessed in relation to the proposed use of the property,
 including high risk use by young children.

2. Consents and Incidents Information (200m radius of the selected site)

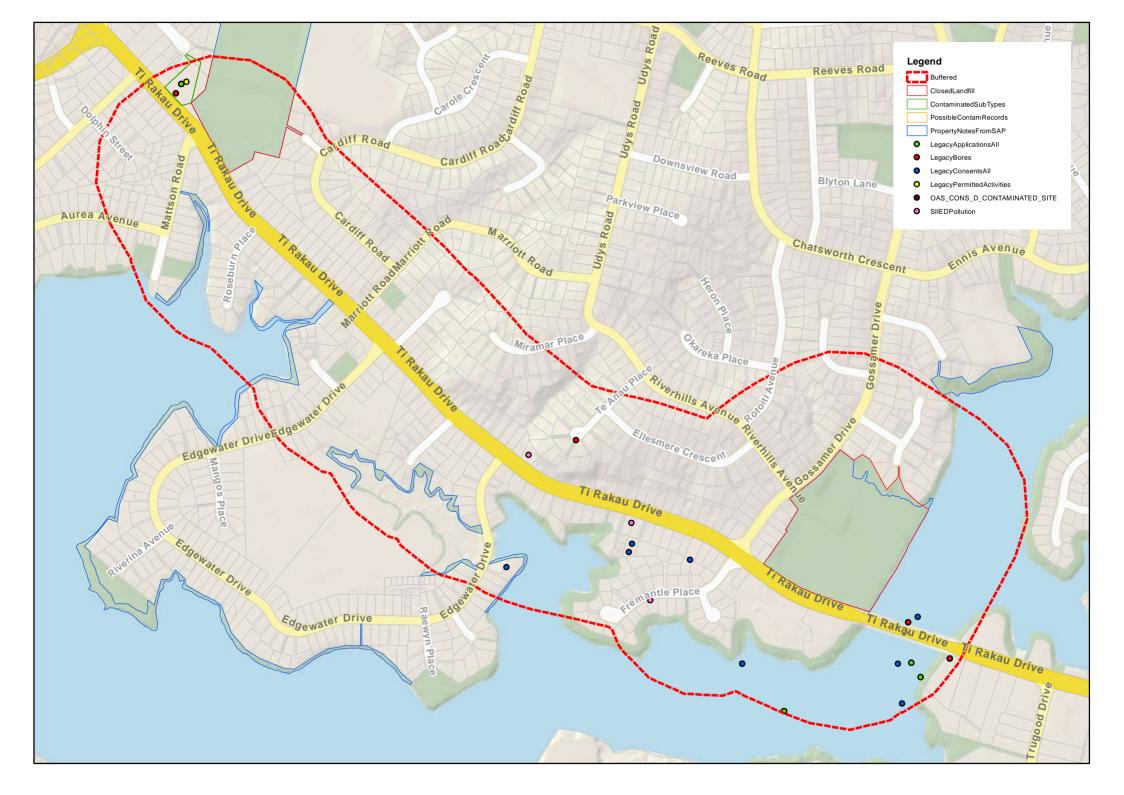
The Council database was searched for records of the following activities within approximately 200 metres of the site:

- Pollution Incidents (including air discharges, oil or diesel spills)
- Bores
- Contaminated site and air discharges, and industrial trade process consents
- Closed Landfills
- Air quality permitted activities

A map of relevant records can be found appended to this letter (Attachment B).

Relevant details of any pollution incidents and consents are appended to this letter (Attachment A). Please refer to the column titled 'Property Address' on the spreadsheet to aid in identifying corresponding data on the map.

While the Auckland Council has carried out the above search using its best practical endeavours, it does not warrant its completeness or accuracy and disclaims any responsibility or liability in respect of the information. If you or any other person wishes to act or to rely on this information, or make any financial commitment based upon it, it is recommended that you seek appropriate technical and/or professional advice.


If you wish to clarify anything in this letter that relates to this site, please contact <u>contaminatedsites@aucklandcouncil.govt.nz</u>. Any follow up requests for information on other sites must go through the online order process.

Should you wish to request any of the files referenced above and/or listed in the attached spreadsheet for viewing, please contact the Auckland Council Call Centre on 301 0101 and note you are requesting former Auckland Regional Council records (the records department requires three working days' notice to ensure the files will be available).

Please note Auckland Council cost recovers officer's time for all site enquiries. As such an invoice for \$128 for the time involved in this enquiry will follow shortly.

Yours Sincerely,

Contamination, Air and Noise Team Specialist Unit | Resource Consents Auckland Council

18 May 2021

AECOM PO Box 434 HAMILTON 3240 Attention: Kerryn Mclellan

Dear Kerryn

Site Contamination Enquiry – Ameti Eastern Busway Route

This letter is in response to your enquiry requesting available site contamination information within Auckland Council records for the above site. Please note this report does not constitute a site investigation report; such reports are required to be prepared by a (third-party) Suitably Qualified and Experienced Practitioner.

The following details are based on information available to the Contamination, Air & Noise Team in the Resource Consent Department. The details provided may be from former regional council information, as well as property information held by the former district/city councils. For completeness the relevant property file should also be requested to obtain all historical records and reports via 09 3010101 or online at:

https://www.aucklandcouncil.govt.nz/buying-property/order-property-report/Pages/order-property-file.aspx.

1. Hazardous Activities and Industries List (HAIL) Information

This list published by the Ministry for the Environment (MfE) comprises activities and industries that are considered likely to cause land contamination as a result of hazardous substance use, storage, and/or disposal.

Council's records indicate the following sites have possibly been subject to activities that fall within the HAIL:

• 27R William Roberts Road, Pakuranga

For more information on these sites, please the tab 'Property Notes From SAP' within Attachment A.

Please note:

- If you are demolishing any building that may have asbestos containing materials (ACM) in it, you have obligations under the Health and Safety at Work (Asbestos) Regulations 2016 for the management and removal of asbestos, including the need to engage a Competent Asbestos Surveyor to confirm the presence or absence of any ACM.
- Paints used on external parts of properties up until the mid-1970's routinely contained lead, a
 poison and a persistent environmental pollutant. You are advised to ensure that soils affected
 by old, peeling or flaking paint are assessed in relation to the proposed use of the property,
 including high risk use by young children.

2. Consents and Incidents Information (200m radius of the selected site)

The Council database was searched for records of the following activities within approximately 200 metres of the site:

- Pollution Incidents (including air discharges, oil or diesel spills)
- Bores
- Contaminated site and air discharges, and industrial trade process consents
- Closed Landfills
- Air quality permitted activities

A map of the search area is included within Attachment B.

Relevant details of any pollution incidents and consents are appended to this letter (Attachment A). Please refer to the column titled 'Property Address' on the spreadsheet to aid in identifying corresponding data on the map.

While the Auckland Council has carried out the above search using its best practical endeavours, it does not warrant its completeness or accuracy and disclaims any responsibility or liability in respect of the information. If you or any other person wishes to act or to rely on this information, or make any financial commitment based upon it, it is recommended that you seek appropriate technical and/or professional advice.

If you wish to clarify anything in this letter that relates to this site, please contact <u>contaminatedsites@aucklandcouncil.govt.nz</u>. Any follow up requests for information on other sites must go through the online order process.

Should you wish to request any of the files referenced above and/or listed in the attached spreadsheet for viewing, please contact the Auckland Council Call Centre on 301 0101 and note you are requesting former Auckland Regional Council records (the records department requires three working days' notice to ensure the files will be available).

Please note Auckland Council cost recovers officer's time for all site enquiries. As such an invoice for \$128 for the time involved in this enquiry will follow shortly.

Yours Sincerely,

Contamination, Air and Noise Team Specialist Unit | Resource Consents Auckland Council

AECOM

DRAFT

Appendix D

Borehole Logs

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

LOG OF AUGERHOLE

DH102

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates

SAMF	PLING & TES	STING			MATERIAL DESC		AL	STAINING/	5	U
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ater coment, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
			_		Sandy SILT with organi	ics; brown.	TOPSOIL			
SAH035-0.2	ACM		-		Silty CLAY; dark brown	with orange mottling	TOF			
SAH035-0.2	Metals					na olango nolang.				
AH035-0.5	None				Some gravels present a	at 1.4mbgl				
							EILL -			
			F							
			- 1							
			-							
AH035-1.4	None		-	× × × × × × × × × × × × × × × × × × ×	SILT, with clay; grey/br	own; wet				
				× × × × × × × × × × × × × × × × × × ×						
			-	× × × × × × × × × × × × × × × × × × ×			SILT			
			- 2	× ^ × ^ × ^ × × × × × × × × × × × × × × × ×						
			-	* * * * * * * * * * * * * * * * * * *				wet at 2.2 mbgl		
SAH035-2.2	None			× * × * * * *					<u> </u>	
			-							
			-							
			-							
			-3							
			_							
epth _	OWATER	Reading	Date	:	Date logged 29/05/2018	Remarks No visual or olfactory evidence of impa	act observed.		Millan	,
2.2m		2	29/05/2	UIÓ	Logged			Method Hyd Har Started 29/0	lrovac ndAug 05/201	/ er 8
					Checked			Finished 29/	05/201	8
					SN2			Page 1	of	1

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project AMETI Ea Project number 60563280 Co-ordinates

Orientation -90° Elevation

Location Pakuranga and Botany, Auckland

SAMP	LING & TES	STING			MATERIAL DESC	CRIPTION	AL	STAINING	/	- io
Sample ID	Analysis	PID (ppm)	Depth	Graphic I	(consistency, relative density, wa	ater content, piasucity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENT	S	Vell Construction
			-		SILT, with organics; bro	own.	TOPSOIL			
SAH011_0.2	None		-	5	SILT, with sands and g	ravels; light brown. some evidence of reworking.	E			
SAH011_0.5	Metals PAH SVOC		-		Clayey SILT; brown					
SAH011_1.0	Metals		- - 1 - -				CLAYey SILT			
			2		sand lenses; moderate	grey, grades to light brown				
SAH011_2.0	None		-							
			-							
GROUNDWATER OBSERVATIONS Depth _ Reading Date				IS e	Date logged 09/05/2018 Logged MN Checked	Remarks No visual or olfactory evidence of impact ob No ground water encountered	oserved.	Method	McMilla Hydrova HandAu 9/05/20	ac / iger 18
					Charlind			LEIUSDEO	-10111/201	

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates

SAMPLING & TESTING			MATERIAL DESC		SF			5
Sample ID Analysis	Depth	Graphic Lo	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
	-	。 · · · · · · · · · · · · · · · · · · ·	Sandy clayey SILT, with	n organics; brown.	TOPSOIL			
SAH010_0.2 Metals	-	S S	SILT, with gravel and so	soria; brown/grey.	FILL			
SAH010_0.5 None	-		Silty CLAY; grey with or	ange mottling.	Silty CLAY			
SAH010_1.0 None		99	Sandy SILT, with grave	is; very moist/wet.	Sandy SILT			
SAH010_1.6 Metals	- 2	<u>*.</u> *					<u> </u>	
GROUNDWATER OBSI Depth _ Rea 1.6m	ERVATION ding Data 9/05/2	е	Date logged 09/05/2018 Logged MN Checked SN2	Remarks No visual or olfactory evidence of impact ob SAH010_0.2: Pesticide analysis	served.	Method Hvd	/iillan rovac dAuge 5/2018	er

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project AMETI Ea Project number 60563280 Co-ordinates Orientation -90° Elevation

Location Pakuranga and Botany, Auckland

SAMP	LING & TES	TING					AL	STAINING	/ _	
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, waetc)	aier conient, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENT	dwat	Well
			-	'n 'n n n n n n n n n n n n n n n n n n n	Sandy SILT, with organ	nics and roootlets; dark brown.	TOPSOIL			
SAH012_0.2	None		-		Sandy SILT, with grave	els; dark brown.				
SAH012_0.5	Metals Asb		-		Silty CLAY, some sand	and black organics; light brown and grey.				
SAH012_1.0	Metals		- 1				FILL			
			-							
			- 2		Silty CLAY; grey/orang	e	U S			
SAH012_2.0	None									
GROUND	WATER	OBSERVA		IS IS	Date logged	Remarks S.C.=Silty CLAY; no visual or olfactory ev	vidence of	Driller	McMillar	 ۱
Depth _		Reading	Date	9	09/05/2018 Logged MN	impact. No ground water encountered		Method	Hydrova HandAu 9/05/201	c/
					Checked			Finished		
					SN2			Page	1 of	1

Client Auckland Transport Project AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates

SAMP	PLING & TES	STING			MATERIAL DESC		AL	STAINING/	5	
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, waetc)	ater content, plassicity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
			-		Sandy SILT, some fill n	naterial; brown.				
SAH017_0.2	Metals		-		SILT, light brown with g	grey and orange mottling.				
AH017_0.6	None		-							
AH017_1.1	None		-1							
ANOT _1.1	None		- - -		some gravel					
			-				FILL			
			- 2 -							
			- -							
			-							
AH017_3.0-	8None		- 3 - -	× × × × × × × × × × × × × × × × × × ×	SILT, minor clay; light ç	grey; moist	SILT			
			- 	* × * × * × × ×						
			-							
			-4							
ROUNF		 OBSERVA		 s	Deta la crea d	Remarks			411	
epth _		Reading	Date		Date logged 14/05/2018	Remarks No visual or olfactory evidence of impact of No ground water encountered	bserved.	Method Hvd	/lillan rovac	/ or
					Logged MN			Har Started 14/0	idAug 05/201	8
					Checked			Finished 14/0)5/201	8
					SN2			Page 1	of	1

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates

SAH030_0.2 None	Depth Graphic Lo	(consistency, relative density, wa etc)	uer coment, plasucity, grading,	SGIC.	STAINING/ ODOURS	vate	ucti
	42:42:4			GEOLOGICAL DESCRIPTION	AND COMMENTS	Groundwater	Well Construction
CALIO2O O 2 None		Sandy SILT with rootlets		TOPSOIL			
	s	Silty SAND; gravels; ligi	ht brown.				
SAH030_0.5 Metals TPH BTEX -	- s	GILT, minor clay and or	ganics; grey with brown and orange mottling.				
SAH030_1.0 None	-1 c	Clayey SILT, organics; d	dark grey with mottled brown.	EILL			
SAH030_1.5 None -	- S	SILT, minor clay; light g	rey.	SILT			
SAH030_2.0 TPH BTEX	-2						
-	-						
GROUNDWATER OBSERVATI Depth _ Reading [IONS Date	Date logged 18/05/2018 Logged MN	Remarks No visual or olfactory evidence of impact obs No ground water encountered	served.	Method Hy Ha Started 18	Millan drovac ndAug (05/201	er I8
		Checked SN2			Finished 18 Page 1	/05/201 of	

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Co-ordinates

Orientation -90° Elevation Location Pakuranga and Botany, Auckland

Project number 60563280

SAMP	LING & TES	STING			MATERIAL DESCRIPTION	STAINING/		Б	
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
HA101_0.1-0.	2Metals		-		Silty CLAY, some fine gravel, trace fine sand; orange; stiff; moist; high plasticity.	FILL		∇	
HA101_0.8-0.	ятрн втех		-		Silty CLAY, trace fine sand; grey; stiff; moist; high plasticity.	Silty CLAY	Sulphur like odour at 0.8-1.0 mbgl		
				Silty fine SAND; light grey; loose; saturated, non plastic. poor recovery from 1.1-1.5 mbgl					
			2						
			_						
GROUNE Depth _ 0.7m	DWATER	OBSERVA Reading 2	TION Date 0/08/2	;	Date logged 20/08/2018 Logged SN Chasked			d Aug 8/201	8
					Checked NM		Page 1	of	

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates

SAMPL	LING & TES	TING					ION	STAINING/	3r	ioi
Sample ID	Analysis	PID (ppm)	Depth	Graphic I	(c)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
				以 中国 中国 中国 中国 中国 中国 中国 中国 中国 中国	andy SILT, with rootle	ts; dark brown.	Ļ			
			_				TOPSOIL			
SAH013_0.3			-		avov SILT: light brow	n with orange mottling. grey sand lenses				
0/110/0_0.0			-	th	roughout; evidence of	f reworking.				
			-							
			-							
			-							
SAH013_0.9			- 1				FILL			
			-	Gr	rades to grey/white sa	ands.				
			-							
SAH013_1.3-1.	.5		-	Gr	rades to dark brown w	vith light brown mottling.				
			-	Gr	ravels present (not co	llected by hand auger).				
			-	Ĩano Fi	ne to medium GRAVE	EL; dark brown; very moist			\mathbf{Y}	
SAH013_1.8-2.	.0		-	*** <u>*</u>	ayey GRAVEL; dark t		C.G.			
			-		ey sands evident		0			
			-2	<u> </u>						
			-							
			-							
			-							
			-							
			_							
			-							
			-							
GROUND	WATER	DBSERVA		s	Date logged	Remarks C.G. = Clayey GRAVEL; No visual or olfacto		nce Driller AEC	Ц ОМ	
Depth _ 1.7m		Reading	Date -		14/05/2018	of impact.	Si y Eviue	Method Hand		ler
					Logged MN			Started 14/0	5/201	8
					Checked SN2			Finished 14/0	5/201 of	
1					SINZ			Page 1	UI	I

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates

SAMF	PLING & TES	STING				MATERIAL DESCRIPTION (consistency, relative density, water content, plasticity, grading,		STAINING/	2	
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	er onnent, prasiony, graung,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well
IA103_0.1-0	2Metals ACM		-	a a a a a a a a a a a a a a a a a a a	SILT, rootlets; dark brow	vn; moist.	TOPSOIL			
			-	× × × × × × × × × × × × × × × × × × ×	Clayey SILT; grey/orano	ge; firm; moist, low plasticity.				
			F	× × × × × × × ×	SILT, some clay; dark g	rey/brown; soft; moist; non plastic.				
			-	× × × × × × × × × × × × × × × × × ×	Clayey SILT; grey with o	prange staining; stiff; moist; low plasticity.	ELL -			
			Grades to orange mottles.			_				
A103_0.9-1	0Metals PAH		- 1		Sity CLAT, white with 0	range stanning, sun, moist, iow prasticity.				
			-							
			-				Silty CLAY			
		Grades to soft.		Silty						
A103_1.7-1	8None		-		Cradae to wat				$\overline{\nabla}$	
					Grades to wet.					
			-							
			-							
			-							
			-							
ROUNE) DWATER	OBSERVA Reading	TION Date 0/08/2	;	Date logged 20/08/2018	Remarks C.S. = Clayey SILT; No visual or olfactor impact.	ry evidence o			
.011		2	0/00/2	.010	Logged CS				and Aug /08/201	
				Checked			Finished 20			
					SN2			Page 1	of	1

Client

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Auckland Transport

AMETI Eastern Busway 2 and 3

Project

Project number 60563280

Co-ordinates

Orientation -90° Location

Elevation Pakuranga and Botany, Auckland

SAMPLING & TESTING		MATERIAL DESCRIPTION	SF			5
Sample ID Analysis PID (ppm)	Depth Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
HA104_0.1-0.2Metals	近近近 近近近 一 、 、 、 、 、 、 、 、 、 、 、 、 、	SILT, rootlets; dark brown; moist.	, vj			
HA104_0.4-0.5None		Grades to lighter grey.	Clayey SILT			
HA104_0.8-0.9TPH BTEX		Silty fine SAND; white/light grey; loose; moist; non plastic.		Sulphur like odour at 0.8-1.0m.	Ţ	
		Grades to light grey.	sity sand			
HA104_1.8-2.0None						
	-					
GROUNDWATER OBSEF Depth _ Readi 1m	VATIONS ng Date 20/08/2018	Date logged 20/08/2018 Logged CS		Method Han	COM d Aug 08/201	

Client Project Auckland Transport

AMETI Eastern Busway 2 and 3

Co-ordinates

Orientation -90° Elevation Location Pakuranga and Botany, Auckland

Project number 60563280

	PLING & TES			b	MATERIAL DESC (consistency, relative density, wa		CAL	STAINING/	ter	ction
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)		GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
HA105_0.2-0. HA105_0.8-0.					plasticity. Glass fragme SILT, some fine sand, r mottles; stiff; moist, higl Grades to brown. Grades to grey/brown w	ith orange mottles. sand, trace rootlets; grey with orange mottling;	FILL T.S.			
HA105_1.3-1.	4None					SILT, trace clay; light grey; soft; wet, low plasticity. lay; light grey; saturated; very loose, non plastic.	Silty SAND S.S.		Ţ	
GROUNE	DWATER				Date logged	Remarks T.S. = TOPSOIL and S.S. = Sandy SILT;		Driller AE	СОМ	
Depth _ 1.3m				9	Date logged 21/08/2018 Logged SN Checked NM	T.S. = TOPSOIL and S.S. = Sandy SILT; No visual of olfactory evidence of impact ol Poor recovery between 1.5-2.0 mbgl.	oserved.	Method Ha	nd Aug 08/201	8 8

Client , Project

Auckland Transport

AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates Orientation -90° Elevation

Location Pakuranga and Botany, Auckland

SAMP	LING & TES	TING			MATERIAL DESC	RIPTION	SF	074.0010		5	
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING ODOURS AND COMMENT	ndwat	Well Construction	
SAH014_0.1	None		-	拼始有效如XXX 按例如如XXXX	Sandy SILT, with organ	ics (rootlets); dark brown.	T.S.				
			-		Sandy SILT, with fine g	ravels and sand; dark brown.					
SAH014_0.5	Metals		-		Clayey SILT, with cobbl	es (>10mm); brown with orange mottling.					
	РАН		-		Increasing gravels.						
			- 1 -		Silty CLAY, with gravels mottling; low plasticity.	y CLAY, with gravels (>10mm); light brown with white nd orange ttling; low plasticity.					
SAH014_1.5	4_1.5 None		some gravels; grades to								
		Grades to orange mottli	ing.								
		Grades to orange with g	des to orange with grey.								
SAH014 2.6	None		-		Silty CLAY, some sand	; grey; moist; moderate plasticity.					
0/11011_1.0			-	x _ x _ x		grey, molsi, moderate plasticity.	s.c.				
			- 3								
			-								
			-								
			-								
GROUND	DWATER (DBSERV Reading	ATION Date	IS 9	Date logged 14/05/2018	Remarks T.S. = TOPSOIL, S.S = Sandy SILT, S.C. No visual or olfactory evidence of impact of	= Silty CLA		AECOM Hand Au		
					Logged MN	No ground water encountered			14/05/20		
					Checked				ished 14/05/2018		
					SN2			Page	1 Of	1	

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project

Project number 60563280

Co-ordinates

SAMP	LING & TES	STING	_		MATERIAL DESC (consistency, relative density, wa etc)		ION	STAINING/	L.	io
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)		GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
SAH015_0.1	Metals		_	h h h h h h h h h h h h h h h h h h h	Silty SAND, with organi	cs and rootlets; brown.	TS			
			-		Silty CLAY; light brown	with orange mottling.				
SAH015_0.5 SAH015_0.9			-		Grades to grey; low to r	noderate plasticity.	FILL			
SAIN15_0.9	none		- 1 - -		Clayey SILT; light grey;	layey SILT; light grey; moist.				
			Becomes wet. Poor recovery with hand auger due to increased water content.				Ţ			
SAH015_1.8	None		- - - 2 -	× × × × × × × × × × × × × × × × × × ×						
			-							
			- - -							
GROUNE Depth _ 1.6m) WATER	OBSERVA Reading 1	ATION Date	9	Date logged 14/05/2018 Logged MN	Remarks No visual or olfactory evidence of impact	observed.	Method Ha	COM nd Aug 05/201	
					Checked SN2			Finished 14/ Page 1		
								Date		

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project

Project number 60563280

Co-ordinates

Orientation -90° Elevation

Location Pakuranga and Botany, Auckland

	PLING & TES	STING		D	MATERIAL DESC (consistency, relative density, wa		CAL	STAINING/	ter	ction
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)		GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
SAH016_0.1	None		-	(有有有 (有有有有	Sandy SILT; organics; I	brown.	T.S.			
SAH016_0.5	Metals		-		SILT, with clays and sa	nd; brown, orange staining				
SAH016_1.1	Metals		- - 1 -		Silty CLAY; orange. Calyey SILT; grey, orar	nge staining.	FILL			
			-		Silty CLAY; grey; moist	. Increasing moisture content.				
			- - - 2 -				Silty CLAY			
SAH016_2.3	None		-				S			
SAH016_3.0	None		3 	× · · · × · × · × × × × × × × × × × × ×	Sandy SILT; grey with r Saturated	minor orange mottling; moist.	Sandy SILT		Ţ	
			- - - - 4 -							
GROUND Depth _ 3.3m) WATER (OBSERVA Reading	LION Date	IS S	Date logged 14/05/2018 Logged MN Checked	Remarks T.S. = TOPSOIL and S.C. = Silty CLAY; No visual or olfactory evidence of impact ob	served.	Started 14/0 Finished 14/0	d Aug 95/201	8
					SN2			Page 1	of	1

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project AMETI Eas Project number 60563280 Co-ordinates

Orientation -90° Elevation

Location Pakuranga and Botany, Auckland

SAMF	LING & TES	TING			MATERIAL DESC		AL	STAINING/		ы
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
HA110_0.2-0.	3None		-	。 · · · · · · · · · · · · · · · · · · ·	SILT, rootlets; dark brov Trace coarse gravels.	vn; moist. Woodchips were observed in the core.	TOPSOIL	No odours observed.		
HA110_0.5-0.	6None		- - - - -	×		th yellow/orange mottles; firm; moist, high	FILL	Fragments of plastic refuse observed at 1.0mbgl.		
HA110_1.3-1.	ŧNone		-	× • × · × · × * * * × · × * * * × · × * * * × · ×	Clayey SILT; light grey; Grades to white/grey wit	Clayey SILT				
HA110_1.7-1.	8None		-	* * * * * * * * * * * * * * * * * * * *	Wet.		Cla		Ţ	
HA110_1.9-2.	ØNone		- 2 - - - - - - -							
GROUNE Depth _ 1.85m	DWATER (DBSERVA Reading	TION Date	IS S	Date logged 20/08/2018 Logged CS	Remarks No visual or olfactory evidence of impact ob	served.	Driller AEC Method Hand Started 20/08	l Aug 3/201	8
					Checked SN2			Finished 20/08 Page 1	3/201 of	

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project AMETI Ea Project number 60563280 Co-ordinates

Orientation -90° Elevation Location Pakuranga and Botany, Auckland

SAMF	PLING & TES	MATERIAE DESCRIPTION				AL	STAINING/		6	
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	iter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
			-	a a a a a a a a a a a a a a a a a a a	SILT, rootlets; dark brow	<i>w</i> n; moist.	T.S.			
HA111_0.2-0	.3Metals		-	× × × × × × × × × × × × × × × × × × ×	Clayey SILT; dark grey plasticity.	with white/orange mottling; soft; moist; low	C.S.			
			-	8 - X - X	Silty CLAY; grey; stiff; n	noist, low plasticity.				
HA111_0.5-0	@Metals		-				Silty CLAY			
HA111_0.9-1	Metals		-	x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x	Silty SAND; light greyis	h orange; loose; moist, non plastic.	Silty SAND			
			- 1 -		Silty CLAY; grey/orange	e; stiff; moist, low plasticity.	Silty CLAY S			
			-							
						white; loose; moist, non plastic.	Silty SAND			
HA111_1.75-	1 186 ne		-	× × × × × × × × × × × × × × × × × × ×	Clayey SIL I, trace fine	sand; white; firm; moist, low plastic.	Calyey SILT			
			- 2	× × × × × × × × × × ×			Ŭ			
			-							
			-							
			-							
			 - -							
BROUNE) DWATER (DBSERVA Reading	TION Date	S	Date logged 20/08/2018	Remarks T.S. = TOPSOIL and C.S. = Clayey SILT; No visual or olfactory evidence of impact o	bserved.		ECOM and Aug	ļ
					Logged CS	No ground water encountered		Started 20 Finished 20)/08/20 [.])/08/20 [.]	
					Checked SN2			Page 1		

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Client Project

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Auckland Transport

AMETI Eastern Busway 2 and 3

Co-ordinates

Orientation -90° Elevation Location Pakuranga and Botany, Auckland

Project number 60563280

SAMF	LING & TES	TING			MATERIAL DESC (consistency, relative density, wa		ION	STAINING/	2	tion
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	un content, processy, groung,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
			-		plasticity.	clay, trace rootlets; brown; soft; moist, low	T.S.			
HA112_0.15	Metals		+	× × × × × ×	Clayey SILT, some fine stiff; moist, high plasticit	sand, trace rootlets; orange with mottled grey; y.				
			F	****** ******* ********	Grades to grey with mot	tled orange	Clayey SILT			
			-	× × × × × × × × × × × × × × × × × × ×			Claye			
			F	******* ******						
			È	x . x . x . x x . x . x . x . x . x . x . x .	Sandy SILT, minor clay, plasticity.	fine to medium sand; grey; soft; moist, low				
IA112_0.9	Metals PAH									
			F	* * * * * * * * * * * * * * * * * * * *			Sandy SILT		$\mathbf{\nabla}$	
			+				San			
			Ļ	× , × , × , × , × , × , × , × , × × , × ,						
			+	×	Silty SAND, medium sa	nd; loose; orange; moist, non plastic. Friable.	S.S.			
			F	x _ x _ x	Silty CLAY, some fine s	and; greyish brown; stiff; moist, high plasticity.				
IA112_1.9	None		- 2	- x - x - x - x - x - x						
			+	s 						
			È				ΓΑΥ			
			+	x 	Grades to bluish grey.		Silty CLAY			
			-							
			E	xx 						
HA112_2.9	None		-							
			-3	<u></u>						
			+							
			F							
			F							
			+							
			-							
	WATER				Date logged	Remarks T.S. = TOPSOIL and S.S = Silty SAND;		Driller AE	СОМ	
Depth _ 1.2m		Reading	Date 21/08/2		21/08/2018	No visual or olfactory evidence of impact o	bserved.		nd Aug	er
					Logged MB			Started 21/	08/201	8
					Checked			Finished 21/		
					SN2			Page 1	of	I

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project AMETI Ea Project number 60563280 Co-ordinates

SAMF	PLING & TES	STING			MATERIAL DESC (consistency, relative density, w		AL	STAINING/	Ļ	ion
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	ter content, plasticity, grading,	GEOL OGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
HA113_0.1	Metals		-	nananan nananan nananan	SILT, trace clay, trace	ootlets; dark brown; moist.	TOPSOIL			
			-		Coarse GRAVEL, trace	silt. Gravels are 5cm diameter.				
HA113_0.9	TPH BTEX		- - - - -		Silty CLAY; grey with o	range mottles; stiff; wet, low plasticity.	HIL			
HA113_1.4	None		-		Silty CLAY, trace fine s	and; bluish grey; stiff; moist, highplasticity.	sity cLAY			
HA113_1.9	None		- - 2 - -							
GROUNI Depth _) DWATER (OBSERV/ Reading	L ATION Date	IS 9	Date logged 21/08/2018 Logged CS Checked SN2	Remarks No visual or olfactory evidence of in No ground water encountered	npact observed.	Method Har		8 8

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project AMETI Ea Project number 60563280 Co-ordinates

Sample ID Analysis PID (ppm) Depth Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS	vater	letic
		GEOL	ODOURS AND COMMENTS	Groundwater	Well Construction
HA114_0.1 Metals العلى الحالي الحالي الحالي الح	SILT, trace clay, trace rootlets; brown; moist.	TOPSOIL	_		
HA114_0.7 TPH BTEX -	Coarse GRAVEL (4-5cm diameter), trace silt, trace sand. Fine to medium gravelly fine to coarse sandy SILT; dark grey; firm; mois				
	Silty CLAY, trace rootlets; grey with orange mottling; firm; moist, high plasticity.	.,			
HA114_1.4 TPH BTEX	Silty CLAY; light grey; firm; moist, high plasticity.	Silty CLAY			
- 2					
	Remarks				
GROUNDWATER OBSERVATIONS Depth _ Reading Date	Date logged Remarks No visual or olfactory evidence of impact 21/08/2018 Logged CS	observed.	Method Har	COM nd Aug 08/201	
	Checked SN2		Finished 21/0 Page 1	08/201 of	

Client Auckland Transport

ProjectAMETI Eastern Busway 2 and 3Project number60563280

Co-ordinates

SAMF	PLING & TES	TING			MATERIAL DESC		AL	STAINING/	L	ņ
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
HA115_0.1	Metals Asb		-	addaddaddaddaddaddaddaddaddaddaddaddadd	SILT, some clay, rootle	ts; dark brown; moist, low plasticity.	TOPSOIL			
HA115_0.6	ТРН ВТЕХ		-		Clayey SILT, some fine brown/orange; soft; mo	to medium gravels, trace brick fragments; ist, low plasticity.	FILL			
			- 1							
			-							
GROUNI Depth _	DWATER (OBSERVA Reading	TION	IS e	Date logged 22/08/2018 Logged MB Checked SN2	Remarks No visual or olfactory evidence of impac No ground water encountered	t observed.		d Aug 8/201	8 8

Client Auckland Transport AMETI Eastern Busway 2 and 3

Project

Project number 60563280

Co-ordinates

SAMF	PLING & TES	STING			MATERIAL DESCRIPTION	ION	STAINING/	er	tion	
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction	
			-	, 19 19 19 19 19 19 19 19 19 19 19 19 19	Clayey SILT, trace sand, trace rootlets; brown; soft; moist, high plasticity.	TOPSOIL				
						P				
HA116_0.25	Metals				Silty CLAY, fine sand; greyish brown; soft; moist, high plasticity.					
			Γ	× × ×						
			F	x x						
			-	- <u>*</u>	light grey; stiff; moist.					
			-			FILL				
				×						
HA116_0.8	Metals TPH		F	- <u>×</u> ×						
	PAH		F							
			- 1	x x x	∖grades to wet at 1.0 mbgl. /			<u> </u>		
			Ļ		Silty CLAY, minor sand; grey; friable; non plastic.					
			F	× × ×						
			F	<u></u>		≽				
			-	- <u>* </u>		Silty CLAY				
HA116_1.6	None		x 	trace organics (amorphous); dark brown; firm, high plasticity.						
				x x						
			F							
HA116_1.9	None				Grades to greyish blue.					
			-2	<u></u>						
			F							
			F							
			F							
			-							
			F							
			-							
			Γ							
			F							
		 OBSERVA		l IS	Remarks		D.:!!			
Depth _		Reading	Date		Date logged Remarks No visual or olfactory evidence of impact ob 22/08/2018	served.		Driller AECOM		
1m			-		Logged			ind Aug		
					MB		Started 22	/08/201	8	
					Checked		Finished 22	/08/201	8	
					SN2					

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates

SAMF	PLING & TES	TING			MATERIAL DESCRIPTION		NN			E
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)		GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
			_	щщщщщщ щщщщщщщ	Clayey sandy SILT, trace rootlets; brown; friable, non plastic.		TOPSOIL			
HA117_0.3	Metals		-		Silty CLAY, trace rootlets; orange with grey mottling; firm; moist, lo plasticity.	w				
			- - 1 -		Clayey SILT, some medium sand, some gravel, trace brick fragme trace organics; dark grey; friable; moist, non plastic.	ents,	FILL			
			-		Silty CLAY, trace organics and rootlets; grey with brown/orange m stiff; moist, low plasticity.	nottling;				
HA117_1.7	Metals PAH		- - - 2 -		Grades to brown.					
HA117_2.5	None		-		Silty CLAY, trace fine sand; light grey, mottled orange; stiff; moist, plasticity.	, high	Silty CLAY			
			- 							
			-							
GROUNI Depth _	DWATER (DBSERVA Reading			Date logged Remarks No visual or olfactory evidence of im 22/08/2018 No ground water encountered Logged MB Checked SN2	npact obs	erved.		d Aug 8/201 8/201	8 8

Client Project

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Auckland Transport

AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates

Orientation -90° Elevation Location Pakuranga and Botany, Auckland

SAMF	PLING & TES	TING			MATERIAL DESC	RIPTION	DN DN			uo
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
SAH031_0.2	None		-		SILT, with organics; bro SILT, some clay; light b	wn. rown with orange mottling.	TOPSOIL			
SAH031_0.5	Metals		-	x x x x x x x x x x x x x x x x x x x	Grades to brown/orang	e with sand.				
SAH031_0.9	None		- 1 -	× × × × × × × × × × × × × × × × × × ×			EILL			
SAH031_1.3	BTEX		-	× × × × × × × × × × × × × × × × × × ×	white/grey sands Silty SAND; white/grey.					
SAU924 2 5	Nasa		- - - - - - -				Silty SAND			
SAH031_2.5	None		- - 							
GROUNDWATER OBSERVATIONS Depth _ Reading Date			IS .	Date logged 18/05/2018 Logged MN Checked SN2	Remarks No visual or olfactory evidence of impact on No ground water encountered	observed.		d Aug 5/201	8 8	

Date Printed: 9/04/2019

Client Auckland Transport AMETI Eastern Busway 2 and 3

Project Project number 60563280

Co-ordinates Orientation -90°

Elevation Location Pakuranga and Botany, Auckland

SAMF	SAMPLING & TESTING				MATERIAL DESC		AL	STAINING/	_	u
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
			-		Clayey SILT, trace bark	and rootlets; dark brown; soft, moist.	T.S.			
HA119_0.15	Metals Asb		-		Clayey SILT, minor san plasticity.	d, trace rootlets, brown; friable; moist, low				
			- - - - - 1		firm; moist, high plastici grey; soft; moist to wet,				$\overline{\nabla}$	
HA119_1.2	Metals		-		Grades to dark grey.		FILL			
			- - 2 - - -		Grades to mottled blue.					
HA119_2.5	None		- - - - - 3		Clayey SILT, trace fine	sand; bluish grey; firm; wet, high plasticity.	Calyey SILT			
			-							
Depth _	DWATER (DBSERVA Reading	TION	S	Date logged	Remarks T.S. = TOPSOIL; No visual or olfactory evidence of impact ob	served		СОМ	
1.1m		-	-		22/08/2018 Logged	No visual or olfactory evidence of impact observed.		Method Hand Auger		
					MB	Started 22/08. Finished 22/08.				
					Checked SN2			Page 1		
								Date		

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project

Project number 60563280

Co-ordinates

Orientation -90° Elevation Location Pakuranga and Botany, Auckland

SAMF	PLING & TES	STING			MATERIAL DESC		N			и
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	iter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
			-	n n n n n n n n n n n n n n n n n n n	SILT with clay, trace roo	otlets; dark brown; moist, low plasticity.	TOPSOIL			
HA120_0.4	Metals PCB		-		Silty CLAY; light grey w	ith orange mottles; firm; moist.	Sity CLAY			
HA120_1.1	None		- 1 - -		Clayey SILT; light grey	with orange; soft; moist.	Clayey SILT			
			-		Silty CLAY; light grey; s	tiff; moist.	Sity CLAY			
HA120_1.9	None		- 2	<u></u>	End of hole.					
			-							
GROUNDWATER OBSERVATIONS Depth _ Reading Date		Date logged 22/08/2018 Logged CS Checked SN2	Remarks No visual or olfactory evidence of impact No ground water encountered	observed.	Method Har		8 8			

Co-ordinates

Location

Orientation -90°

Elevation

Pakuranga and Botany, Auckland

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project number 60563280

SAMPLING & TESTING GEOLOGICAL DESCRIPTION MATERIAL DESCRIPTION Well Construction STAINING/ Graphic Log (cons etc) istency, relative density, water content, plasticity, grading, Groundwater ODOURS PID (ppm) Sample 1 Analysis AND Depth COMMENTS 뼒렮닅븮 SILT, rootlets; dark brown; moist. TOPSOIL Metals ACM SILT, some fine gravels, trace clay, trace shell fragments; dark brown; HA121_0.2 moist. FIL Clayey SILT; grey/brown with orange mottles; firm; moist, low plasticity. Clayey SILT HA121_0.8 трн Clayey SILT, trace sand; dark brown; mottled orange; soft; moist. • 1 Silty CLAY; orange/grey; stiff; moist; low plasticity. HA121_1.4 None Silty CLAY Grades to grey. HA121_1.9 None . 2 Remarks No visual or olfactory evidence of impact observed. GROUNDWATER OBSERVATIONS Date logged Driller AECOM Depth _ Reading Date 20/08/2018 Method Hand Auger No ground water encountered Logged Started 20/08/2018 CS Finished 20/08/2018 Checked SN2 Page of 1 1

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Client

Auckland Transport AMETI Eastern Busway 2 and 3

Orientation -90°

Co-ordinates

Elevation Location Pakuranga and Botany, Auckland

Project Project number 60563280

AUGERHOLE LOG ENVIRONMENTAL BH_LOG.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

SAMP	LING & TE	STING			MATERIAL DESC (consistency, relative density, wa		ION	STAINING/	er	tion
Sample ID	Analysis	PID (ppm)	Depth	Graphic Lo	etc)		GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
					SILT; rootlets; dark brow	wn; moist.	T.S.			
HA122_0.15	Metals		-	× × × × × × (× × × × × × (× × × × × × × (× × × × × × × (* * * × × × × (* * * × × × × (* * * × × × × (* * * × × × × (* * × × × (* * × × × (* * × × × (* * × × × (* * × × × (* * × × (* * × × (* * × × (* * × × (* * × × (* * × × (* * ×) (* * × × (* * ×) (* * × × (* * ×) (* * × (* * ×) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (* *) (*	Clayey SILT with sand; plasticity.	grey/brown with orange mottling; stiff; moist, low				
			-	<pre>* * * * * * * * * * * * * * * * * * *</pre>			Clayey SILT			
HA122_0.8	None		- - 1 -		Silty fine SAND; white/g	rey; moist; very loose, non plastic.	Silty SAND			
HA122_1.4	None		-	· · × · · · × × · · · × · ·	Poor recovery, medium Wet.	sand.			Ţ	
			- 2							
			-							
GROUNE Depth _ 1.5m	L DWATER	OBSERVA Reading	TION Date	S	Date logged 21/08/2018 Logged CS	Remarks T.S. = TOPSOIL; No visual or olfactory evidence of impact ob	served.	Method Har Started 21/0	COM nd Aug 08/201	8
					Checked SN2			Finished 21/0 Page 1	08/201 of	
								Date F		

Client Project Auckland Transport

AMETI Eastern Busway 2 and 3

Co-ordinates Orientation -90°

Orientation-90°ElevationLocationPakuranga and Botany, Auckland

Project number 60563280

SAMP	LING & TES	TING			MATERIAL DESC		AL	STAINING/		uo
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
			-	h h h h h h h h h h h h h h h h h h h	SILT with clay; dark bro	wn; moist, low plasticity.	TOPSOIL			
HA123_0.2 HA123_0.85	Metals		-		plasticity.	k brown with orange mottling; moist, low and; grey/brown; soft, high plasticity.				
			- 1 -		Fine to medium sandy (CLAY; light brown/grey; moist, high plasticity.				
	Metals PAH		-		Grades to wet.		Sandy CLAY		Ţ	
HA123_1.5	None		-		Grades to saturated.		Sandy			
			- 2							
			-							
			-							
GROUND Depth _ 1.3m) WATER (DBSERVA Reading	TION Date	IS P	Date logged 22/08/2018 Logged CS	Remarks No visual or olfactory evidence of impact	observed.	Method Ha Started 22	COM nd Aug 08/201	8
					Checked SN2			Finished 22 Page 1	08/201 of	

HOLE IDENTIFICATION

Orientation -90°

Location

Co-ordinates 2678501.1mE

168 Gossamer Dr

HA1

6473730.5mN

Elevation 11m (Approx)

Client	
Project	

Auckland Transport

AMETI Eastern Busway 2 and 3

Project number 60563280

SAMF			MATERIAL DESC		SF			Б		
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	oonsistency, relative density, wa	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
RH_HA1_0.2	M ietals TPH VOC Asbestos	0.9	- - -	記記 Si	Ity SAND with organic Ity CLAY; grey/brown.		-			
RH_HA1_0.9	-1.1	0.8	- - - - - 1 -	Sa Sa	ands decreasing.	ow placticity, mottled orange.	-			
			- - - - - - - 2 - - - -		lty CLAY; light brown.	Moderate placticity, moist, mottled orange.	-			
RH_HA1_2.8	-3.0	0.8	- - - 3 -	× × × × × × × × × × × × × × × × × × ×	layey SILT with minor ange mottling.	sands; light grey. High plasticity, soft, moist, dark				
			- - - - - - - - 4							
			- - - -							
GROUNI Depth	DWATER (DBSERVA Reading	- - TION Date	S	Date logged 19/02/2019	Remarks		Driller		
					Logged MN			Method Started 19,	02/201	9

Checked MH

of 1

Finished 19/02/2019

1

Page

HOLE IDENTIFICATION

HA

Client	Auckland Transport
Project	AMETI Eastern Busy

AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates 2678566.1mE 6473715.4mN Orientation -90° Elevation 10m (Approx) Location 168 Gossamer Dr

SAMP	SAMPLING & TESTING					AL	STAINING/	2	tion	
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wal etc)	er conten, producty, grouing,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
RH_HA2_0.2-	0.4	0.0	-	n n n n n n n n n n n n n n n n n n n	Sandy SILT with organic	cs; dark brown. Dry.				
KI_IAZ_U.2-	0.4	0.0	-	72727	Clayey SILT; brownish g	grey. Dry, stiff, no plasiticity, mottled orange.	_			
RH_HA2_0.7-	0.9	0.1	-	* * * * * - × - * - × - * - × - * - × - * - × -	Silty CLAY; light grey. D	Pry, fim, low plasticity, mottled orange.	_			
			- 1	\$ \$						
			 - -	s 	Lense of sandy SILT.					
			2							
				× · · × · · ×	Clayey SILT; grey. Mois	t high plasticity	_		$\overline{\nabla}$	
RH_HA2_2.7-	2.9	0.0		*_* *_* *_* *_* *_* *_* *_*	Moisture increasing to s	aturated.				
			3 	× × × × × × × × × × · × · × × × · × · ×						
				* * * * * * * * * * * * * * * * * * * * *						
			-	× × × × × ×	Trace of black organics.					
			-4	* * * * * * * * * * * * * * * * * * * *						
				× × × × × × · × × × × × · × × × × × · × × × ×						
			- 5 -							
			-							
			-							
GROUNE	WATER	OBSERVA		IS IS	Date logged	Remarks		Driller		
Depth _ 2.6m		Reading	Date -	9	19/02/2019 Logged			Method		
					MN Checked			Started 19/0 Finished 19/0	02/201 02/201	
					MH			Page 1		

LOG OF AUGERHOLE

HOLE IDENTIFICATION

HA

Client	Auckland Transport
Project	AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates 2678585mE 6473690.3mN Orientation -90° Elevation 9m (Approx) Location 168 Gossamer Dr Τ -

SAMF	p		MATERIAL DESC		AL	STAINING/		и		
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
RH_HA3_0.3	0.5	1.0	- - - - - - - -		SILT with organics; darl Clayey SILT with minor orange.	k brown. Dry. sands; brownish grey. Non plastic, brittle, mottled				
RH_HA3_1.4-	1.6	1.9			brown.	sands and gravels (pebbles and scoria); dark				
RH_HA3_2.0	2.2	2.4 - 2				y CLAY with gravels; dark grey. Slightly moist, low plasticity. y CLAY with fine sand; grey/blue. Moderate plasticity, moist. nse of gravels.				
			- - - 3 - -							
			- - - - - - - 5							
GROUNE Depth _	L DWATER (DBSERVA Reading	L TION Date	IS S	Date logged 20/02/2019 Logged MN	Remarks	<u> </u>		2/201	
					Checked MH			Finished 20/0 Page 1 Date Pr	of	

AUGERHOLE LOG ENVIRONMENTAL RIVERHILLS ENVIRO LOGS.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

LOG OF AUGERHOLE

HOLE IDENTIFICATION

HA

Client	Auckland Transport
Project	AMETI Eastern Busy

AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates 2678639.9mE 6473661.2mN Orientation -90° Elevation 8m (Approx) Location 168 Gossamer Dr

SAMP	PLING & TES	STING			MATERIAL DESCR		AL	STAINING/	Ŀ	ioi
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water etc)	coment, prasucny, grauny,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
RH_HA4_0.1-	0Maetals TPH	0.0	-		Sandy SILT with organics	and rootlets; brown. Dry.				
RH_HA4_0.1-	VOC Asbestos	0.0		× × × × × × × × × × × × × × × × × × ×	Clayey SILT; light grey. D Silty CLAY; light grey. Dry Silty CLAY; grey/blue. Mo	ry, no plasticity, brittle, mottled orange.				
			- - - - - - - - - - -							
GROUNE Depth _) WATER (OBSERVA Reading	TION Date	S S	Date logged	Remarks		Driller		
		C C			20/02/2019 Logged			Method		
					MN				2/201	
					Checked			Finished 20/0		
					MH			Page 1	of	1

HOLE IDENTIFICATION HA5

Client Project

AUGERHOLE LOG ENVIRONMENTAL RIVERHILLS ENVIRO LOGS.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Auckland Transport

AMETI Eastern Busway 2 and 3

Co-ordinates 2678493mE 6473706.5mN Orientation -90° Elevation 11m (Approx) Location 168 Gossamer Dr

Project number 60563280

SAMF	LING & TES	STING			MATERIAL DESC		0NL			ы
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
			-		SILT with minor sand, o	rganics and rootlets; light brown. Dry.				
RH_HA5_0.3-	0.5	0.0	-		Silty CLAY; light grey. D	ry, stiff, low plasticity.				
RH_HA5_0.5-	0.7	0.1		X X		Low plasticity, moist, mottled orange.				
RH_HA5_1.5-	1.7	0.0		x · x · x · x x · x · x · x · x · x x · x · x · x · x · x x · x · x · x · x · x x · x · x · x · x · x x · x · x · x · x · x x · x · x · x · x · x · x x · x · x · x · x · x · x x · x · x · x · x · x · x · x x · x · x · x · x · x · x · x x · x · x · x · x · x · x · x · x · x ·	Grades to dark grey. Moisture increasing.	ands; grey. Mosit, moderate plasticity.				
			- - 2 - - -		Sands increasing. Moisture increasing.	ando, groy. moor, modolate pisotiony.			Ţ	
			- - - - - 3		Clayey SILT with minor staining.	sands and black organics; grey with green				
			- - - 4 -							
			-							
GROUNE Depth _ 2.1m	OWATER	OBSERVA Reading	TION Date	S	Date logged 19/02/2019 Logged	Remarks		Driller Method Started 19/0)2/201	9
					MN Checked			Finished 19/0		
					МН			Page 1	of	1

Project number 60563280

LOG OF AUGERHOLE

HOLE IDENTIFICATION

HA6 E 6473679.5mN

Client	
Project	

AUGERHOLE LOG ENVIRONMENTAL RIVERHILLS ENVIRO LOGS.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Auckland Transport

AMETI Eastern Busway 2 and 3

Co-ordinates 2678523mE 6473679.5mN Orientation -90° Elevation 10m (Approx) Location 168 Gossamer Dr

L

SAMP	LING & TES	STING			MATERIAL DESCRIPTION	N			Б
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, water content, plasticity, grading, etc)	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
			-		Sandy SILT with organics and rootlets; dark brown.				
RH_HA6_0.2-	0.4	0.0	- - - -		Clayey SILT; grey. Dry, mottled orange.				
			- - 1 - -		Silty CLAY; orange/brown. Dry, low plasticity.			\bigtriangledown	
RH_HA6_1.4-	1.6	0.0	-		Silty CLAY; grey. Soft, wet, high plasticity, mottled orange.				
			- - 2	× × × × × × × × × × × × × × × × × × ×	SILT; grey/brown. Wet, soft, high plasticity.				
			- - - - -		Silty CLAY; grey/blue. Firm, moist, low plasticity.				
			3 - - - -	×_ × _					
			- - 4 -						
			-						
			- - - - -						
			- - -						
GROUND Depth _ 1.4m	WATER	OBSERVA Reading	ATION Date -	IS e	Date logged Remarks 19/02/2019 Logged		Driller Method		
					MN Checked		Started 19/0 Finished 19/0)2/201)2/201	
					MH		Page 1	of	1

HOLE IDENTIFICATION

Client Project Auckland Transport

AMETI Eastern Busway 2 and 3

Co-ordinates 2678522.9mE 6473670mN Orientation -90° Elevation 9m (Approx) Location 168 Gossamer Dr

Project number 60563280

SAMF	LING & TES	STING			MATERIAL DESC		0NL			и
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Construction
			-	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SILT; with organics and	rootlets; dark brown.				
RH_HA7_0.2-	0Maetals TPH VOC	0.1	-	× × × × ×	Clayey SILT with sand;	brownish-grey. Brittle, dry.				
	Asbestos		- - - -		Silty CLAY; light grey wi	th orange mottling. Firm, low plasticity, dry.				
RH_HA7_1.8-	2.0	0.0	- - - - - - - - -		Grades to moist, moder	ate plasticity.				
				× _ × _ ×	Clayey SILT; grey/pale	green. Dry.				
			- - 	× × × × × × × × × × × × × × × × × × ×	Clayey SILT with fine sa	inds; pale blue. Moist, moderate plasticity.				
			- - 	× × × × × × × × × × × × × × × × × × ×						
			- - -							
			-							
			4 							
			- -							
			-							
GROUNE	DWATER	 OBSERVA		IS	Date logged	Remarks		Driller		
Depth _		Reading	Date	;	21/02/2019			Method		
					Logged MN				2/201	9
					Checked			Finished 21/0	2/201	9
					MH			Page 1	of	1

AUGERHOLE LOG ENVIRONMENTAL RIVERHILLS ENVIRO LOGS.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

HOLE IDENTIFICATION HA8

Client Project

t AMETI Eastern Busway 2 and 3

Auckland Transport

Project number 60563280

Co-ordinates 2678616.8mE 6473607.3mN Orientation -90° Elevation 8m (Approx) Location 168 Gossamer Dr

SAMF	PLING & TES	STING			MATERIAL DESC		N			ц
Sample ID	Analysis	PID (ppm)	Depth	Graphic Lo	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	Staining/ Odours And Comments	Groundwater	Well Construction
RH_HA8_0.1	-0.3	1.1	-		SILT with some sands,	rootlets and organics; dark brown.				
					SILT with some clays; d	lark brown. Dry, no plasticity.				
RH_HA8_0.9	-1.1	1.1	- - 1		prittle.	grey with orange mottling. No plasticity, dry,				
			-		Clayey SILT with gravel Silty CLAY; light brown	s; brown, mottled orange.	-			
			-	<u> </u>	Silty SAND; light grey.					
RH_HA8_1.8	-2.0	1.8		······································	Silty CLAY; grey with sli noist.	ght green colouration. Low to medium plasticity,	-			
			-							
			-		Grades to saturated.				<u> </u>	
			- 3 -							
			- - -							
			4 							
			- 5							
			-							
			- - -							
Depth _	OWATER (OBSERVA Reading	TION	S	Date logged 20/02/2019	Remarks		Driller		
2.5m			-		Logged			Method Started 20/0)2/201	9
					MN Checked			Finished 20/0		
					MH			Page 1	of	1

HOLE IDENTIFICATION HA9

Client	
Project	

Auckland Transport

AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates 2678535.2mE 6473600.1mN Orientation -90° Elevation 9m (Approx) Location 168 Gossamer Dr

SAMP	LING & TES	STING			MATERIAL DESC (consistency, relative density, wa		AL	STAINING/		io
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	etc)	er coment, prasicity, graung,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
RH HA9 0.2-	(Metals	0.0	-	n n n n n n n n n n n n n n n n n n n	SILT with some sands,	rootlets and organics; dark brown. Dry.				
RH_HA9_0.2-	TPH VOC Asbestos	0.0	-		Clayey SILT with some	sand; brown. Dry, no plasticity.				
RH_HA9_0.6-	VOC	0.1				rey with orange mottling. Dry, firm, no plasticity.				
	Asbestos		- 1		Silty SAND with some g	ravels; brown. Dry, weak.				
					Clayey SILT; brown. Sli	ghtly moist.	_			
					Moisture increasing.					
			-		Silty CLAY; pale green.	Moist, low to moderate plasticity.				
			-							
				× × × × × × × × × × × × × ×	Clayey SILT; blue. Mois	t, high plasticity, soft.				
			-							
			-							
			- 4							
			-							
			-5							
			-							
			- - -							
GROUNE) WATER	 OBSERVA Reading	TION Date	s	Date logged	Remarks		Driller		
		5			21/02/2019 Logged			Method		
					MN			Started 21/0	2/201	9
					Checked			Finished 21/0	2/201	9
					МН			Page 1	of	1

HOLE IDENTIFICATION HA10

Client Project Auckland Transport

AMETI Eastern Busway 2 and 3

Project number 60563280

Co-ordinates 2678595.8mE 6473573.3mN Orientation -90° Elevation 8m (Approx) Location 168 Gossamer Dr

SAMF	PLING & TES	STING			MATERIAL DESC		N N N	STAINING/		no
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	consistency, relative density, wa	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
RH_HA10_0. RH_HA10_2. RH_HA10_2.	3 Metals TPH VOC Asbestos	0.1			ILT with some clay; da layey SILT; brownish- ilty CLAY; grey. Moist, layey SILT with minor loist.	sands and gravels; grey, mottled orange. Slightly nd organics; dark Grey. Moist, low to moderate Stiff, low plasticity, moist.				
GROUNI Depth _ 2.6m	DWATER	OBSERVA Reading	L - - - - - - Date	IS e	Date logged 20/02/2019 Logged MN Checked MH	Remarks		Driller Method Started 20/0 Finished 20/0 Page 1		9

MATERIAL DESCRIPTION

HOLE IDENTIFICATION

HA11

Client

Auckland Transport

AMETI Eastern Busway 2 and 3

Project Project number 60563280

SAMPLING & TESTING

6473532.5mN Co-ordinates 2678496.9mE Orientation -90° Elevation 10m (Approx) Location 168 Gossamer Dr GICAL /ell ruction STAINING/ vater stency, relative density, water content, plasticity, grading, ODOURS

Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	tter content, plasticity, grading,	GEOLOGICA DESCRIPTIC	STAINING/ ODOURS AND COMMENTS	Groundwater	Well Constructic
RH_HA11_0.2	2 ŀ0ie ttals TPH VOC Asbestos	0.0	-			organics and rootlets; dark brown. /grey. Dry, sands are fine.	-			
			- - - -		Silty SAND with trace cl	lays and gravels; brown. Soft, moist, no plasticity.				
RH_HA11_1.1	-1.3	0.1	- - -		Clays increasing.					
RH_HA11_1.6)-1.8	0.1	- -		Clayey SAND with black Low to medium plasticit	k organics; grey with organge/dark red mottling. y, soft, moist, slight sulfuric odour.				
			- 2			ith orange mottling. Firm, no plasticity, dry. ands; orange/grey. Low plasticity, slightly moist,	-			
			- - -	x - x - x x - x - x x - x - x x - x - x x - x -	stiff.	ands, orange/grey. Low plasticity, slightly moist,			$\overline{\nabla}$	
			-		Sands increasing. Moisture increasing.					
			3 							
			- -	x x x x x x x x x x x x x x x x x x x x						
			- - 4	× _ × _ · · · · · · · · · · · · · · · ·						
			-		Clayey SAND; grey/bro	wn. Saturated.				
			-							
			- - -							
						Remarks				
GROUND Depth _ 2.5m	WATER (DBSERVA Reading	Date	15 9	Date logged 21/02/2019			Driller Method		
					Logged MN				2/201	
					Checked MH			Finished 21/0 Page 1		

HOLE IDENTIFICATION

HA12

Client Project

AUGERHOLE LOG ENVIRONMENTAL RIVERHILLS ENVIRO LOGS.GPJ TEST_ENVIRODRILLHOLE.GDT 09/04/19

Auckland Transport

AMETI Eastern Busway 2 and 3

Co-ordinates 2678547.3mE 6473505.2mN Orientation -90° Elevation 8m (Approx) Location 168 Gossamer Dr

Project number 60563280

SAMF	PLING & TES	STING			MATERIAL DESC		AL	STAINING/	_	u
Sample ID	Analysis	PID (ppm)	Depth	Graphic Log	(consistency, relative density, wa etc)	ter content, plasticity, grading,	GEOLOGICAL DESCRIPTION	ODOURS AND COMMENTS	Groundwater	Well Construction
RH_HA12_0.	1 Metals	0.0	-		SILT with minor sands,	organics and rootlets; dark brown, dry.				
	TPH VOC Asbestos		- - -		SAND with some silts a	nd clays; light brown. Weak, unconsolidated.				
RH_HA12_0.	8₩letals TPH VOC Asbestos	0.1	- - 		Colour becomes grey, r	noisture increasing. sands; grey with orange mottling. Moist.				
			-	× × × × ×						
			-	× · · · × · · × ·	Silty SAND; light grey. N					
			-2 - - -	× × × × × × × × × × × × × × × × × × ×	Clayey SILT; pale blue/	green. Moist.				
RH_HA12_2.	5-2.7	0.1	- - - -	× + + × + × × × × × × × × × × × × × × ×	Clayey SILT with some orange mottling. Moist,	gravels and organic material; dark grey with low plasticity.		Slight sulphur odour.	<u> </u>	
			3 - - - - -							
			- - 4 -							
			- - - -							
			- 5 - -							
			- - - -							
GROUN		OBSERVA		s	Deta la sur d	Remarks				
Depth _ 2.5m		Reading	Date	9	Date logged 21/02/2019			Driller Method		
					Logged MN				02/201	9
					Checked			Finished 21/0		
						1				

AECOM

DRAFT

Appendix E

Data Assurance

Appendix E Data Assurance Results

The data validation procedure employed in the assessment of the field and laboratory Quality Assurance and Quality Control (QA/QC) has indicated that the reported analytical results are representative of conditions at the sample locations and that the overall quality of the analytical data produced is acceptably reliable for the purpose of this investigation.

Field Quality Control

Field QA/QC requirements for the project are summarised in the table below.

Field Control Requirements	Summary of Works Completed
Use of standard procedures for sampling.	AECOM standard procedures for soil sampling were applied. A three stage decontamination procedure of equipment was used between the collection of each sample.
Use new pair of disposable nitrile gloves for each soil sample collected.	A new pair of disposable nitrile gloves was used for each soil sample collected.
Use of laboratory prepared and supplied sampling containers appropriate for each contaminant investigated.	Laboratory prepared sampling containers, supplied by Hills Laboratories Limited (Hills) or Analytica Laboratories Limited (Analytica), were used for sample collection.
Use of appropriate sample Chain of Custody (CoC) documentation.	AECOM CoC procedures were followed and have been supplied as part of this reporting. Copies of the CoCs are included in the laboratory reports (Appendix H).

Data Quality Objective

Data Quality Objectives for the project are summarised in the table below.

Data Quality Objective	Summary of Works Completed
Samples to be submitted for metal / organic analysis to be received at the laboratory at a temperature below 15 °C.	The temperature of the samples upon receipt at the laboratory was not recorded, however samples were stored on ice in chilled containers while completing field works and during transit.
Soil and groundwater samples to be extracted and analysed within acceptable holding times for the contaminant of potential concern. The maximum acceptable sample holding times for organic analyses are 14 days, and 30 days for inorganic analysis.	The samples were received by the laboratories within two days after collection in the field and were then stored in a laboratory controlled environment.
Samples to be appropriately preserved and handled by the laboratory.	Samples were appropriated preserved and handled by the laboratories. A laboratory transcript from Hills noted that replicate analyses performed on two samples as part of the laboratory quality assurance procedures showed greater variation than would normally be expected and the average results of the replicate analyses were reported. This variation is likely to reflect the heterogeneity of the sample which comprised fill materials, and is not considered to compromise the results of the DSI.
Laboratory limits of reporting are to be less than the adopted acceptance criteria for the project.	The laboratory limits of reporting for contaminants of concern for the project are less than the acceptance criteria.

AECOM

DRAFT

Appendix F

Photographs

PHOTOGR	APHIC LOG				
	e: Auckland Trar	sport Site Locatio	on:	Project No. 605	63280
Photo No. 1 Direction: South	Date: 10 May 2018				
Description: View of loca	tion of DH104				
					•
Photo No. 2	Date: 16 Aug 2018		AREA		
Direction: South East	1				
Description: View of loca	tion of DH108				

PHOTOGRA	APHIC LOG		
Client Name	e: Auckland Trar	sport Site Location:	Project No. 60563280
Photo No. 3 Direction: South East	Date: 27 Aug 2018		
Description: View of loca	tion of DH109		
Photo No. 4	Date: 15 Aug 2018		
Direction: North			
Description: View of loca	tion of EHA101		

PHOTOGRA	APHIC LOG		
Client Name	e: Auckland Tran	sport Site Location:	Project No. 60563280
Photo No. 5 Direction: South West	Date: 10 May 2018		
Description: View of loca	tion of EHA102		
Photo No. 6	Date: 8 Aug 2018		
Direction: South West	1		
Description: View of loca	tion of EHA103		

PHOTOGRA			
Client Name	e: Auckland Trans	sport Site Location:	Project No. 60563280
Photo No. 7 Direction: North West	Date: 8 Aug 2018		Gull
Description: View of loca	tion EHA104		AL ENTRANCE ENTRANCE ENTRANCE
Photo No. 8	Date: 8 Aug 2018		
Direction: South East			
Description: View of loca	tion of EHA105		

PHOTOGRAPHIC LOG			
Client Name: Auckland Transport		Site Location:	Project No. 60563280
Photo No. 9 Direction: South West	Date: 10 May 2018		
Description: View of loca	tion of EHA106		
Photo No. 10	Date: 10 May 2018		
Direction: South East		a marine	
Description: View of loca	tion of EHA107		

PHOTOGRA	APHIC LOG		
Client Name	e: Auckland Trans	port Site Location:	Project No. 60563280
Photo No. 11 Direction: South East	Date: 10 May 2018		
Description: View of loca	tion of EHA108		
Photo No. 12	Date: 8 Aug 2018		
Direction: West			
Description: View of loca	tion of EHA111		

PHOTOGRA	PHIC LOG		
Client Name	e: Auckland Tran	sport Site Location:	Project No. 60563280
Photo No. 13 Direction: South East	Date: 15 Aug 2018		
Description:	ion of EHA112		
Photo No. 14	Date: 8 Aug 2018		
Direction: East Description: View of locat	ion of EHA113		

PHOTOGRA			
Client Name	e: Auckland Tran	sport Site Location:	Project No. 60563280
Photo No. 15	Date: 15 Aug 2018		
Direction: South			
Description: View of locat	ion of EHA114		
Photo No. 16	Date: 8 Aug 2018		
Direction: West			SAVE SADO
Description: View of locat	ion of EHA115		

PHOTOGRA	PHIC LOG		
Client Name	e: Auckland Tran	sport Site Location:	Project No. 60563280
Photo No. 17 Direction:	Date: 8 Aug 2018		
West			LILLE TRAINING INSESSE
Description: View of local	ion of EHA116		
Photo No. 18	Date: 8 Aug 2018		
Direction: North West		Harvey Norman	
Description: View of locat	ion of EHA117		

PHOTOGRA	APHIC LOG		
Client Name	: Auckland Tran	port Site Location:	Project No. 60563280
Photo No. 19 Direction: East	Date: 10 May 2018		B
Description: View of locat	tion of EHA118		
Photo No. 20	Date: 8 Aug 2018		
Direction: East			
Description: View of local	tion of EHA120		

PHOTOGRA	PHIC LOG			
Client Name	: Auckland Trans	port Site Lo	ocation:	Project No. 60563280
Photo No. 21	Date: 8 Aug 2018			
Direction: West Description: View of locat	ion of EHA121			
Photo No. 22	Date: 15 Aug 2018			
Direction: East Description: View of locat	ion of EHA122			

PHOTOGRAPHIC LOG		
Client Name: Auckland Trans	sport Site Location:	Project No. 60563280
Photo No. Date: 23 8 Aug 2018		
Direction: North West		
Description: View of location of EHA123		
Photo No. Date: 24 18 Feb 2019		
Direction: North West		
Description: View from HA4 facing Ti Rakau Drive and Tamaki River.		

AECOM

AECOM

DRAFT

Appendix G

Soil Analytical Results

Table G1 - EB2 and EB3 Soil Analytical Results

Sample Location	DH102	DH	1103	DH	1104	Dł	1107	DH108	DH109	EHA101	EHA102	Environmental Guideline V				
AECOM Sample Reference Laboratory Sample Reference	DH102_0.2	DH103_0.5	DH103_1.0 1979897.7	DH104_0.2	DH104_1.6	DH107_0.5	DH107_1.0	DH108_0.2	DH109_0.5	AME_EHA101_0.1 2035377.1	SAH013_0.3 1981512.1	E	ivironmental Guideline Va	lues		
	1991296.1	1979897.6		1979897.1	1979897.4	1979897.1	1979897.11	1984837.1	1985842.2			Auckland		Commercial / Industrial		
Sample Date	29-May-18	9-M;	ay-18	9-М	ay-18	9-M	ay-18	14-May-18	18-May-18	20-Aug-18	11-May-18	Background Concentrations ¹ Auckland C	Auckland Council Permitted Activity			
Sample Depth	0.2	0.5	1.0	0.2	1.6	0.5	1.0	0.2	0.5	0.1-0.2	0.3	Non Volcanic	Criteria ²			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Range		Outdoor Worker (Unpaved)
Heavy Metals																
Total Recoverable Arsenic	< 2	2.0	3.0	2.0	3.0	< 2	3.0	3.0	4.0	3.0	4.0	<u>0.4 - 12</u>	100	70		
Total Recoverable Cadmium	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.2	< 0.10	< 0.10	< 0.10	<0.10	0.2	<u>< 0.1 - 0.65</u>	7.5	1300		
Total Recoverable Chromium	35.0	23.0	22.0	16.0	26.0	41.0	40.0	25.0	21.0	30.0	28.0	<u>2 - 55</u>	400	6300		
Total Recoverable Copper	24.0	11.0	9.0	7.0	12.0	14.0	18.0	13.0	25.0	14.0	11.0	<u>1 - 45</u>	325	> 10000		
Total Recoverable Lead	14.0	6.8	6.8	8.3	9.6	20.0	12.8	11.9	16.4	9.2	15.6	<u>< 5 - 65</u>	250	3300		
Total Recoverable Mercury	-	-	-	-	-	-	-	-	-	-	-	<u>< 0.03 - 0.45</u>	0.75			
Total Recoverable Nickel	32.0	10.0	9.0	8.0	12.0	34.0	22.0	22.0	26.0	29.0	16.0	<u>0.9 - 35</u>	105	-		
Total Recoverable Zinc	55.0	27.0	22.0	16.0	35.0	53.0	40.0	34.0	89.0	45.0	42.0	<u>9 - 180</u>	400	-		

Sample Location	EHA	EHA103		E	HA105	EHA106	EH	A107	EH	A108	Environmental Guideline Values		
AECOM Sample Reference	AME_EHA103_0.1	AME_EHA103_0.9	AME_EHA104-0.1	AME_HA105_0.2	AME_HA105_0.8	AME_EHA106_0.5	AME_EHA107_0.1 1981512.8	AME_EHA107_0.5	AME_EHA108_0.5	AME_EHA108_1.1	E	nvironmental Guideline va	aiues
Laboratory Sample Reference	2035377.4	2035377.5	2035377.7	2035379.15	2035379.16	1981512.6		1981512.9	1981512.13	1981512.14	Auckland		
Sample Date	20-Aug-18		20-Aug-18	21-Aug	18	11-May-18	11-M	May-18	11-N	lay-18	Background Concentrations ¹	Concentrations ¹ Auckland Council	
Sample Depth	0.1-0.2	0.9-1.0	0.1-0.2	0.2-0.3	0.8-0.9	0.5	0.1	0.5	0.5	1.1	Non Volcanic	Permitted Activity Criteria ²	Commercial / Industrial Outdoor Worker (Unpaved)
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Range		
Heavy Metals													
Total Recoverable Arsenic	3.0	2.0	2.0	< 2	< 2	4.0	3.0	4.0	4.0	< 2	<u>0.4 - 12</u>	100	70
Total Recoverable Cadmium	<0.10	<0.10	<0.10	0.1	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<u>< 0.1 - 0.65</u>	7.5	1300
Total Recoverable Chromium	32.0	7.0	27.0	23.0	23.0	32.0	30.0	36.0	36.0	8.0	<u>2 - 55</u>	400	6300
Total Recoverable Copper	7.0	6.0	9.0	13.0	13.0	19.0	19.0	10.0	12.0	3.0	<u>1 - 45</u>	325	> 10000
Total Recoverable Lead	10.0	13.8	13.8	17.2	9.5	12.9	<u>103.0</u>	12.8	10.4	5.3	<u>< 5 - 65</u>	250	3300
Total Recoverable Mercury	-	-	-	-	-	-	-	-	-	-	<u>< 0.03 - 0.45</u>	0.75	
Total Recoverable Nickel	15.0	10.0	14.0	16.0	12.0	31.0	33.0	19.0	17.0	6.0	<u>0.9 - 35</u>	105	-
Total Recoverable Zinc	38.0	16.0	36.0	36.0	30.0	47.0	61.0	32.0	32.0	5.0	<u>9 - 180</u>	400	-

Sample Location		EHA111		EH	A112	EHA113	EHA114	EHA115		En la contra de la contra de	han a
AECOM Sample Reference	AME_EHA111_0.2	AME_EHA111_0.5	AME_EHA111_0.9	AME_HA112_0.15	AME_HA112_0.9	AME_HA113_0.1	AME_HA114_0.1	AME_HA115_0.1		Environmental Guideline Va	lues
Laboratory Sample Reference	2035377.11	2035377.12	2035377.13	2035379.4	2035379.5	2035379.11	2035379.8	2036105.1	Auckland		
Sample Date		20-Aug-18		21-A	.ug-18	21-Aug-18	21-Aug-18	22-Aug-18	Background Concentrations ¹	Auckland Council Permitted Activity	NES Guideli
Sample Depth	0.2-0.3	0.5-0.6	0.9-1.0	0.15-0.3	0.9-1.0	0.1-0.2	0.1-0.2	0.1-0.2	Non Volcanic	Criteria ²	Commercial / I
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Range		Outdoor Worker
Heavy Metals											
Total Recoverable Arsenic	5.0	3.0	3.0	3.0	< 2	4.0	4.0	4.0	<u>0.4 - 12</u>	100	70
Total Recoverable Cadmium	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.6	0.2	0.2	<u>< 0.1 - 0.65</u>	7.5	1300
Total Recoverable Chromium	25.0	31.0	38.0	24.0	27.0	40.0	37.0	37.0	<u>2 - 55</u>	400	6300
Total Recoverable Copper	12.0	13.0	6.0	5.0	10.0	43.0	35.0	21.0	<u>1 - 45</u>	325	> 10000
Total Recoverable Lead	33.0	10.6	11.0	7.8	4.8	<u>71.0</u>	27.0	37.0	<u>< 5 - 65</u>	250	3300
Total Recoverable Nickel	20.0	18.0	7.0	8.0	21.0	<u>61.0</u>	<u>55.0</u>	27.0	<u>0.9 - 35</u>	105	-
Total Recoverable Zinc	44.0	30.0	10.0	25.0	25.0	157.0	96.0	80.0	<u>9 - 180</u>	400	-

Notes All results are presented in mg/kg unless otherwise stated.

- Sample not analysed for compound and/or no criteria adopted.

Underlined, bolded, coloured and italicised text represents exceedances of adopted acceptance criteria.

1. Auckland Council, 2017. Auckland Unitary Plan - Operative in part (AUPOP). Table E30.6.1.4.2 Background ranges of trace elements in Auckland soils sources from Table 3 of TP153:2001 Background Concentrations of Inorganic Elements in Soils from the Auckland Region. (Auckland Background Concentrations). 2. Auckland Council, 2017. Auckland Unitary Plan - Operative in part (AUPOP). Table E30.6.1.4.1, Permitted Activity Soil Acceptance Criteria. 3. Ministry for the Environment, 2012. Users' Guide National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Values taken from Appendix B Soil Contaminant Standards, Tables B2 and B3 (NES Guidelines).

Table G2 - EB2 and EB3 Soil Analytical Results - Heavy Metals

Sample Location	EH/	EHA116		A117	EHA118	E	HA119	EHA120	Environmental Guideline Values				
AECOM Sample Reference	AME_HA116_0.25	AME_HA116_0.8	AME_HA117_0.3	AME_HA117_1.7	AME_EHA118_0.5	AME_HA119_0.15	AME_HA119_1.2	AME_HA120_0.4	En	vironmental Guideline v	alues		
Laboratory Sample Reference	2036105.6	2036105.7	2036105.3	2036105.4	1985842.7	2036105.1	2036105.11	2036105.13	Auckland				
Sample Date	22-Ai	ıg-18	22-A	ug-18	18-May-18	18-,	18-Aug-18		18-Aug-18 22-		Background Concentrations ¹	Auckland Council Permitted Activity	NES Guidelines ³
Sample Depth	0.25-0.35	0.8-0.9	0.3-0.4	1.7-1.8	0.5	0.15-0.25	1.2-1.3	0.4-0.5	Non Volcanic	Criteria ²	Commercial /		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Range		Industrial Outdoor W orker (Unpaved)		
HeavyMetals													
Total Recoverable Arsenic	< 2	3.0	3.0	4.0	5.0	3.0	2.0	2.0	<u>0.4 - 12</u>	100	70		
Total Recoverable Cadmium	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.12	< 0.10	<u>< 0.1 - 0.65</u>	7.5	1300		
Total Recoverable Chromium	13.0	3.0	47.0	51.0	32.0	32.0	31.0	41.0	<u>2 - 55</u>	400	6300		
Total Recoverable Copper	7.0	9.0	15.0	23.0	12.0	11.0	12.0	9.0	<u>1 - 45</u>	325	> 10000		
Total Recoverable Lead	11.3	42.0	11.1	16.9	16.0	14.0	22.0	12.3	< 5 - 65	250	3300		
Total Recoverable Nickel	10.0	4.0	25.0	<u>37.0</u>	22.0	19.0	16.0	16.0	<u>0.9 - 35</u>	105	-		
Total Recoverable Zinc	19.0	12.0	38.0	32.0	41.0	26.0	40.0	27.0	<u>9 - 180</u>	400	-		

Sample Location	EHA121	EHA122		EHA123		HA1	HA4					
AECOM Sample Reference	AME_EHA121_0.2	AME_HA122_0.15	AME_HA123_0.2	AME_HA123_0.85	AME_HA123_1.2	RH_HA1_0.2-0.4 19-05381-1	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	Env	vironmental Guideline V	alues	
Laboratory Sample Reference	2035377.2	2035379.1	2036105.16	2036105.17	2036105.18		19-05381-12	19-05381-13	Auckland			
Sample Date	20-Aug-18	21-Aug-18	22-Aug-18			19-Feb-19	20-Feb-19	20-Feb-19	Background Concentrations ¹	Auckland Council Permitted Activity	NES Guidelines ³	
Sample Depth	0.2-0.3	0.15-0.25	0.2-0.3	0.85-0.95	1.2-1.3	0.2-0.4	0.1-0.3	1.8-2.0	Non Volcanic Range	Criteria ²	Commercial / Industrial Outdoor Worker (Unpayed)	
Sample Type	Soil	Soil	Soil	Soil	Soil	SAND	SILT	SiltyCLAY				
HeavyMetals												
Total Recoverable Arsenic	5.0	3.0	< 2	< 2	< 2	1.6	6.5	1.8	<u>0.4 - 12</u>	100	70	
Total Recoverable Cadmium	0.3	< 0.10	< 0.10	< 0.10	< 0.10	0.024	0.150	0.031	<u>< 0.1 - 0.65</u>	7.5	1300	
Total Recoverable Chromium	31.0	30.0	13.0	13.0	11.0	16.4	30.0	24.9	<u>2 - 55</u>	400	6300	
Total Recoverable Copper	<u>50.0</u>	11.0	8.0	3.0	3.0	6.3	10.3	10.8	<u>1 - 45</u>	325	> 10000	
Total Recoverable Lead	58.0	39.0	9.6	5.7	4.4	8.7	14.8	6.9	<u>< 5 - 65</u>	250	3300	
Total Recoverable Nickel	<u>56.0</u>	25.0	15.0	7.0	6.0	12.7	14.0	18.1	<u>0.9 - 35</u>	105	-	
Total Recoverable Zinc	78.0	42.0	19.0	18.0	16.0	21.7	40.4	28.1	<u>9 - 180</u>	400	-	

Sample Location	HA7	H	A9	HA10	HA11	H	A12	F				
AECOM Sample Reference	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8	RH_HA10_0.3-0.5	RH_HA11_0.2-0.4	RH_HA12_0.1-0.3	RH_HA12_0.8-1.0	Env	vironmental Guideline V	alues		
Laboratory Sample Reference	19-05381-26	19-05381-28	19-05381-29	19-05381-17	19-05381-20	19-05381-23	19-05381-24	Auckland				
Sample Date	21-Feb-19	21-Feb-19	o-19 21-Feb-19	21-Feb-19 21-Feb-19) 21-Feb-19	l-Feb-19 20-Feb-19	21-Feb-19	21-Feb-19 21-Feb-19		Background		NES Guidelines ³
Sample Depth	0.2-0.4	0.2-0.4	0.6-0.8	0.3-0.5	0.2-0.4	0.1-0.3	0.8-1.0	Non Volcanic	Criteria ²	Commercial /		
Sample Type	Clayey SILT	ayey SILT SILT	SiltyCLAY	SILT	SILT	SILT	SiltySAND	Range		Industrial Outdoor W orker (Unpaved)		
HeavyMetals												
Total Recoverable Arsenic	1.3	5.0	2.0	1.1	2.1	3.8	1.2	<u>0.4 - 12</u>	100	70		
Total Recoverable Cadmium	0.015	0.120	0.023	0.035	0.045	0.120	0.017	<u>< 0.1 - 0.65</u>	7.5	1300		
Total Recoverable Chromium	20.7	25.4	18.1	29.2	20.3	30.8	16.1	<u>2 - 55</u>	400	6300		
Total Recoverable Copper	5.3	8.2	4.4	5.7	6.8	9.4	5.7	<u>1 - 45</u>	325	> 10000		
Total Recoverable Lead	6.0	11.6	9.3	10.9	6.7	11.0	4.7	<u>< 5 - 65</u>	250	3300		
Total Recoverable Nickel	9.8	13.7	11.4	18.0	10.5	15.1	7.9	<u>0.9 - 35</u>	105	-		
Total Recoverable Zinc	12.8	33.7	16.8	25.9	20.0	34.0	14.6	<u>9 - 180</u>	400	-		

Notes All results are presented in mg/kg unless otherwise stated.

- Sample not analysed for compound and/or no criteria adopted.

Underlined, bolded, coloured and italicised text represents exceedances of adopted acceptance criteria.

1. Auckland Council, 2017. Auckland Unitary Plan - Operative in part (AUPOP). Table E30.6.1.4.2 Background concentrations of trace elements in Auckland soils sources from Table 3 of TP153:2001 Background Concentrations of Inorganic Elements in Soils from the Auckland Region. (Auckland Background Concentrations). 2. Auckland Council, 2017. Auckland Unitary Plan - Operative in part (AUPOP). Table E30.6.1.4.1, Permitted Activity Soil Acceptance Criteria. 3. Ministry for the Environment, 2012. Users' Guide National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Values taken from Appendix B Soil Contaminant Standards, Tables B2 and B3 (NES Guidelines).

AECOM

DRAFT

Appendix H

Laboratory Documentation

Page 1 of 6

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	2036105	SPv2
Contact:	N Macorison	Date Received:	23-Aug-2018	
	C/- AECOM New Zealand Limited	Date Reported:	12-Sep-2018	(Amended)
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.3.1	
	Auckland 1140	Client Reference:	60563280/3.3.1	
		Submitted By:	Suresh Nuthalapa	ıti

Sample Type: Soil								
5	Sample Name:	AME_HA115_0.1- 0.2 22-Aug-2018	AME_HA115_0.6- 0.7 22-Aug-2018	AME_HA117_0.3- 0.4 22-Aug-2018	AME_HA117_1.7- 1.8 22-Aug-2018	AME_HA116_0.2 5-0.35 22-Aug-2018		
	Lab Number:	2036105.1	2036105.2	2036105.3	2036105.4	2036105.6		
Individual Tests								
Dry Matter	g/100g as rcvd	-	73	-	71	-		
Heavy Metals, Screen Level								
Total Recoverable Arsenic	mg/kg dry wt	4	-	3	4	< 2		
Total Recoverable Cadmium	mg/kg dry wt	0.20	-	< 0.10	< 0.10	< 0.10		
Total Recoverable Chromium	mg/kg dry wt	37	-	47	51	13		
Total Recoverable Copper	mg/kg dry wt	21	-	15	23	7		
Total Recoverable Lead	mg/kg dry wt	37	-	11.1	16.9	11.3		
Total Recoverable Nickel	mg/kg dry wt	27	-	25	37	10		
Total Recoverable Zinc	mg/kg dry wt	80	-	38	32	19		
BTEX in Soil by Headspace G	C-MS							
Benzene	mg/kg dry wt	-	< 0.06	-	-	-		
Toluene	mg/kg dry wt	-	< 0.06	-	-	-		
Ethylbenzene	mg/kg dry wt	-	< 0.06	-	-	-		
m&p-Xylene	mg/kg dry wt	-	< 0.12	-	-	-		
o-Xylene	mg/kg dry wt	-	< 0.06	-	-	-		
Polycyclic Aromatic Hydrocarb	ons Screening in S	Soil	'	1	,			
1-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.014	-		
2-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.014	-		
Perylene	mg/kg dry wt	-	-	-	< 0.014	-		
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	-	-	-	< 0.04	-		
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	-	-	-	< 0.04	-		
Acenaphthylene	mg/kg dry wt	-	-	-	< 0.014	-		
Acenaphthene	mg/kg dry wt	-	-	-	< 0.014	-		
Anthracene	mg/kg dry wt	-	-	-	< 0.014	-		
Benzo[a]anthracene	mg/kg dry wt	-	-	-	< 0.014	-		
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	-	< 0.014	-		
Benzo[b]fluoranthene + Benzo[fluoranthene	j] mg/kg dry wt	-	-	-	< 0.014	-		
Benzo[e]pyrene	mg/kg dry wt	-	-	-	< 0.014	-		
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	< 0.014	-		
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	< 0.014	-		
Chrysene	mg/kg dry wt	-	-	-	< 0.014	-		
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	-	< 0.014	-		
Fluoranthene	mg/kg dry wt	-	-	-	< 0.014	-		
Fluorene	mg/kg dry wt	-	-	-	< 0.014	-		
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	-	< 0.014	-		

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sample Type: Soil		-				
Sar	mple Name:	AME_HA115_0.1- 0.2 22-Aug-2018	AME_HA115_0.6- 0.7 22-Aug-2018	AME_HA117_0.3- 0.4 22-Aug-2018	AME_HA117_1.7- 1.8 22-Aug-2018	AME_HA116_0.2 5-0.35 22-Aug-2018
	ab Number:	2036105.1	2036105.2	2036105.3	2036105.4	2036105.6
Polycyclic Aromatic Hydrocarbons	s Screening in S	Soil				
Naphthalene	mg/kg dry wt	-	-	-	< 0.07	-
Phenanthrene	mg/kg dry wt	-	-	-	< 0.014	-
Pyrene	mg/kg dry wt	-	-	-	< 0.014	-
Total of Reported PAHs in Soil*	mg/kg	-	-	-	< 0.4	-
Total Petroleum Hydrocarbons in	Soil					
C7 - C9	mg/kg dry wt	-	< 9	-	-	-
C10 - C14	mg/kg dry wt	-	< 20	-	-	-
C15 - C36	mg/kg dry wt	-	< 40	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	< 70	-	-	-
BTEX in VOC Soils by Headspac		1		1		
Benzene	mg/kg dry wt	-	< 0.3	-	-	-
Ethylbenzene	mg/kg dry wt	-	< 0.3	-	-	-
Toluene	mg/kg dry wt	-	< 0.3	-	-	-
m&p-Xylene	mg/kg dry wt	-	< 0.5	-	-	-
o-Xylene	mg/kg dry wt	-	< 0.3	-	-	-
Halogenated Aliphatics in VOC Se		ace GC-MS	1	1	1	1
Bromomethane (Methyl Bromide)	mg/kg dry wt	-	< 0.3	-	-	-
Carbon tetrachloride	mg/kg dry wt	-	< 0.3	-	-	-
Chloroethane	mg/kg dry wt	-	< 0.3	-	-	-
Chloromethane	mg/kg dry wt	-	< 0.3	-	-	-
1,2-Dibromo-3-chloropropane	mg/kg dry wt	-	< 0.5	-	-	-
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	-	< 0.3	-	-	-
Dibromomethane	mg/kg dry wt	-	< 0.3	-	-	-
1,3-Dichloropropane	mg/kg dry wt	-	< 0.3	-	-	-
Dichlorodifluoromethane	mg/kg dry wt	-	< 0.5	-	-	-
1,1-Dichloroethane	mg/kg dry wt	-	< 0.3	-	-	-
1,2-Dichloroethane	mg/kg dry wt	-	< 0.5	-	-	-
1,1-Dichloroethene	mg/kg dry wt	-	< 0.3	-	-	-
cis-1,2-Dichloroethene	mg/kg dry wt	-	< 0.3	-	-	-
trans-1,2-Dichloroethene	mg/kg dry wt	-	< 0.3	-	-	-
Dichloromethane (methylene chloride)	mg/kg dry wt	-	< 3	-	-	-
1,2-Dichloropropane	mg/kg dry wt	-	< 0.3	-	-	-
1,1-Dichloropropene	mg/kg dry wt	-	< 0.3	-	-	-
cis-1,3-Dichloropropene	mg/kg dry wt	-	< 0.3	-	-	-
trans-1,3-Dichloropropene	mg/kg dry wt	-	< 0.3	-	-	-
Hexachlorobutadiene	mg/kg dry wt	-	< 0.3	-	-	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	-	< 0.3	-	-	-
1,1,2,2-Tetrachloroethane Tetrachloroethene	mg/kg dry wt mg/kg dry wt	-	< 0.3 < 0.3	-	-	-
(tetrachloroethylene)						-
1,1,1-Trichloroethane	mg/kg dry wt	-	< 0.3	-	-	-
1,1,2-Trichloroethane	mg/kg dry wt	-	< 0.3	-	-	-
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	< 0.3	-	-	-
Trichlorofluoromethane	mg/kg dry wt	-	< 0.3	-	-	-
1,2,3-Trichloropropane	mg/kg dry wt	-	< 0.5	-	-	-
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	-	< 0.3	-	-	-
Vinyl chloride	mg/kg dry wt	-	< 0.3	-	-	-
Haloaromatics in VOC Soils by He	-	MS			1	
Bromobenzene	mg/kg dry wt	-	< 0.3	-	-	-
1,3-Dichlorobenzene	mg/kg dry wt	-	< 0.3	-	-	-
4-Chlorotoluene	mg/kg dry wt	-	< 0.3	-	-	-

Sample Type: Soil						
S	ample Name:	AME_HA115_0.1- 0.2 22-Aug-2018	AME_HA115_0.6- 0.7 22-Aug-2018	AME_HA117_0.3- 0.4 22-Aug-2018		AME_HA116_0.2 5-0.35 22-Aug-2018
	Lab Number:	2036105.1	2036105.2	2036105.3	2036105.4	2036105.6
Haloaromatics in VOC Soils by	Headspace GC-N	//S	1	1	·	1
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	-	< 0.3	-	-	-
1,2-Dichlorobenzene	mg/kg dry wt	-	< 0.3	-	-	-
1,4-Dichlorobenzene	mg/kg dry wt	-	< 0.3	-	-	-
2-Chlorotoluene	mg/kg dry wt	-	< 0.3	-	-	-
1,2,3-Trichlorobenzene	mg/kg dry wt	-	< 0.3	-	-	-
1,2,4-Trichlorobenzene	mg/kg dry wt	-	< 0.3	-	-	-
1,3,5-Trichlorobenzene	mg/kg dry wt	-	< 0.3	-	-	-
Monoaromatic Hydrocarbons in	VOC Soils by He	adspace GC-MS				
n-Butylbenzene	mg/kg dry wt	-	< 0.3	-	-	-
tert-Butylbenzene	mg/kg dry wt	-	< 0.3	-	-	-
Isopropylbenzene (Cumene)	mg/kg dry wt	-	< 0.3	-	-	-
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	-	< 0.3	-	-	-
n-Propylbenzene	mg/kg dry wt	-	< 0.3	-	-	-
sec-Butylbenzene	mg/kg dry wt	-	< 0.3	-	-	-
Styrene	mg/kg dry wt	-	< 0.3	-	-	-
1,2,4-Trimethylbenzene	mg/kg dry wt	-	< 0.3	-	-	-
1,3,5-Trimethylbenzene	mg/kg dry wt	-	< 0.3	-	-	-
Ketones in VOC Soils by Heads	space GC-MS	1				
2-Butanone (MEK)	mg/kg dry wt	-	< 50	-	-	-
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	-	< 9	-	-	-
Acetone	mg/kg dry wt	-	< 50	-	-	-
Methyl tert-butylether (MTBE)	mg/kg dry wt	-	< 0.3	-	-	-
Trihalomethanes in VOC Soils b	by Headspace G	C-MS				
Bromodichloromethane	mg/kg dry wt	-	< 0.3	-	-	-
Bromoform (tribromomethane)	mg/kg dry wt	-	< 0.5	-	-	-
Chloroform (Trichloromethane)	mg/kg as rcvd	-	< 0.3	-	-	-
Dibromochloromethane	mg/kg dry wt	-	< 0.3	-	-	-
Other VOC in Soils by Headspa	ace GC-MS					
Carbon disulphide	mg/kg dry wt	-	< 0.3	-	-	-
Naphthalene	mg/kg dry wt	-	< 0.3	-	-	-
S	ample Name:	AME_HA116_0.8- 0.9 22-Aug-2018	AME_HA119_0.1 5-0.25 22-Aug-2018	AME_HA119_1.2- 1.3 22-Aug-2018	AME_HA120_0.4- 0.5 22-Aug-2018	AME_HA123_0.2 0.3 22-Aug-2018
	Lab Number:	2036105.7	2036105.10	2036105.11	2036105.13	2036105.16
Individual Tests						
Dry Matter	g/100g as rcvd	58	-	-	71	81
Heavy Metals, Screen Level						
Total Recoverable Arsenic			1	2	2	<2
Total Mecoverable Alsenic	mg/kg dry wt	3	3	2		
Total Recoverable Cadmium	mg/kg dry wt mg/kg dry wt	3 < 0.10	3 < 0.10	0.12	< 0.10	< 0.10
			_			< 0.10 13
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.12	< 0.10	
Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt mg/kg dry wt	< 0.10 3	< 0.10 32	0.12 31	< 0.10 41	13
Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper	mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.10 3 9	< 0.10 32 11	0.12 31 12	< 0.10 41 9	13 8
Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.10 3 9 42	< 0.10 32 11 14.0	0.12 31 12 22	< 0.10 41 9 12.3	13 8 9.6
Total Recoverable CadmiumTotal Recoverable ChromiumTotal Recoverable CopperTotal Recoverable LeadTotal Recoverable Nickel	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.10 3 9 42 4 12	< 0.10 32 11 14.0 19	0.12 31 12 22 16	< 0.10 41 9 12.3 16	13 8 9.6 15
Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.10 3 9 42 4 12	< 0.10 32 11 14.0 19	0.12 31 12 22 16	< 0.10 41 9 12.3 16	13 8 9.6 15
Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt ons Screening in S	< 0.10 3 9 42 4 12 Soil	< 0.10 32 11 14.0 19 26	0.12 31 12 22 16 40	< 0.10 41 9 12.3 16 27	13 8 9.6 15 19
Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo 1-Methylnaphthalene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt ons Screening in S mg/kg dry wt	< 0.10 3 9 42 4 12 Soil < 0.017	< 0.10 32 11 14.0 19 26	0.12 31 12 22 16 40	< 0.10 41 9 12.3 16 27	13 8 9.6 15 19
Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo 1-Methylnaphthalene 2-Methylnaphthalene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt ons Screening in S mg/kg dry wt	< 0.10 3 9 42 4 12 Soil < 0.017 < 0.017	< 0.10 32 11 14.0 19 26	0.12 31 12 22 16 40 -	< 0.10 41 9 12.3 16 27 -	13 8 9.6 15 19 - -
Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo 1-Methylnaphthalene 2-Methylnaphthalene Perylene Benzo[a]pyrene Potency	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt ons Screening in S mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.10 3 9 42 4 12 Soil < 0.017 < 0.017 < 0.017	< 0.10 32 11 14.0 19 26	0.12 31 12 22 16 40 -	< 0.10 41 9 12.3 16 27 -	13 8 9.6 15 19 -
Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo 1-Methylnaphthalene 2-Methylnaphthalene Perylene Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic	mg/kg dry wt mg/kg dry wt	< 0.10 3 9 42 4 12 Soil < 0.017 < 0.017 < 0.017 < 0.017 < 0.017	< 0.10 32 11 14.0 19 26 - - - - - - -	0.12 31 12 22 16 40 - - - -	< 0.10 41 9 12.3 16 27 - - - -	13 8 9.6 15 19 - - - - -

Sa	ample Name:	AME_HA116_0.8- 0.9 22-Aug-2018	AME_HA119_0.1 5-0.25 22-Aug-2018	AME_HA119_1.2- 1.3 22-Aug-2018	AME_HA120_0.4- 0.5 22-Aug-2018	AME_HA123_0.2- 0.3 22-Aug-2018
	Lab Number:	2036105.7	2036105.10	2036105.11	2036105.13	2036105.16
Polycyclic Aromatic Hydrocarbor		Soil		I	1	1
Anthracene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[e]pyrene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.017	-	-	-	-
Chrysene	mg/kg dry wt	< 0.017	-	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.017	-	-	-	-
Fluoranthene	mg/kg dry wt	< 0.017	-	-	-	-
Fluorene	mg/kg dry wt	< 0.017	-	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.017	-	-	-	-
Naphthalene	mg/kg dry wt	< 0.09	-	-	-	-
Phenanthrene	mg/kg dry wt	< 0.017	-	-	-	-
Pyrene	mg/kg dry wt	< 0.017	-	-	-	-
Total of Reported PAHs in Soil*	mg/kg	< 0.4	-	-	-	-
Pentachlorophenol Screening in	Soil by LCMSM	S				
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	-	< 0.05	< 0.05
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	-	-	-	< 0.05	< 0.05
Total Petroleum Hydrocarbons ir	n Soil	1	I		1	1
C7 - C9	mg/kg dry wt	< 10	-	-	-	-
C10 - C14	mg/kg dry wt	< 20	-	-	-	-
C15 - C36	mg/kg dry wt	< 40	-	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	-	-	-	-
Sa	ample Name:					
	ampie Name.	5-0.95	AME_HA123_1.2- 1.3 22-Aug-2018			
	•	5-0.95 22-Aug-2018	1.3 22-Aug-2018			
	Lab Number:	5-0.95				
Individual Tests	Lab Number:	5-0.95 22-Aug-2018 2036105.17	1.3 22-Aug-2018 2036105.18	-	-	-
Individual Tests Dry Matter	•	5-0.95 22-Aug-2018	1.3 22-Aug-2018	-	-	-
Individual Tests Dry Matter Heavy Metals, Screen Level	Lab Number: g/100g as rcvd	5-0.95 22-Aug-2018 2036105.17 74	1.3 22-Aug-2018 2036105.18 71	-		-
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic	Lab Number: g/100g as rcvd mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2	1.3 22-Aug-2018 2036105.18 71 < 2	-	- -	- -
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium	g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10		-	- - - -
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium	g/100g as rcvd mg/kg dry wt mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11	-	-	-
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper	g/100g as rcvd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13 3	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11 3	-	-	-
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium	g/100g as rcvd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11	-	- - - -	
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead	g/100g as rcvd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13 3 5.7	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11 3 4.4		- - - - -	
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11 3 4.4 6	- - - - -	- - - - - - -	
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor	g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18 Soil	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11 3 4.4 6 16	- - - - -	- - - - - - -	
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene	g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18 Soil < 0.014	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11 3 4.4 6 16 16 < 0.014	- - - - -		- - - - - -
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene 2-Methylnaphthalene	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18 Soil < 0.014 < 0.014	1.3 22-Aug-2018 2036105.18 71 2010 71 2010 2010 11 3 3 4.4 6 16 16 20014 20014	- - - - - - -		- - - - - -
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene 2-Methylnaphthalene Perylene Benzo[a]pyrene Potency	g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18 Soil < 0.014	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11 3 4.4 6 16 16 < 0.014	- - - - - -		- - - - - -
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene Perylene	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 <2 < 0.10 13 3 5.7 7 18 Soil < 0.014 < 0.014 < 0.014	1.3 22-Aug-2018 2036105.18 71 2010 71 2010 2010 11 3 3 4.4 6 16 16 20014 20.014 20.014	- - - - - - - - - - - -		- - - - - -
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Copper Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene Perylene Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 <2 < 0.10 13 3 5.7 7 18 Soil < 0.014 < 0.014 < 0.014 < 0.014 < 0.04	1.3 22-Aug-2018 2036105.18 71 < < 2 < 0.10 11 3 4.4 6 16 6 16 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014	- - - - - - - - - - - - - -		- - - - - - - - - - - - -
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Copper Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene 2-Methylnaphthalene Perylene Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 <2 < 0.10 13 3 5.7 7 18 Soil < 0.014 < 0.014 < 0.014 < 0.014 < 0.04 < 0.04	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11 3 4.4 6 16 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.04			- - - - - - - - - - - - - -
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Copper Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene 2-Methylnaphthalene Perylene Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF) Acenaphthylene	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 22-Aug-2018 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18 Soil < 0.014 < 0.014 < 0.014 < 0.04 < 0.04 < 0.04 < 0.014	1.3 22-Aug-2018 2036105.18 71 < 2 < 0.10 11 3 4.4 6 16 < 0.014 < 0.014 < 0.014 < 0.04 < 0.04 < 0.04			
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Copper Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene 2-Methylnaphthalene Perylene Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF) Acenaphthylene Acenaphthene	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 $22-Aug-2018$ 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18 Soil < 0.014 < 0.014 < 0.014 < 0.04 < 0.04 < 0.014 < 0.014 < 0.014	1.3 22-Aug-2018 2036105.18 71 71 4.4 6 16 16 4.4 6 16 0.014 < 0.014 < 0.04 < 0.04 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014			
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Copper Total Recoverable Copper Total Recoverable Lead Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene Perylene Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF) Acenaphthylene Acenaphthene Anthracene	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 $22-Aug-2018$ 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18 Soil < 0.014 < 0.014 < 0.014 < 0.014 < 0.04 < 0.04 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014	1.3 22-Aug-2018 2036105.18 71 71 6 6 10 11 3 4.4 6 16 16 6 16 6 16 0.014 < 0.014 < 0.014 < 0.04 < 0.04 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014			
Individual Tests Dry Matter Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Copper Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbor 1-Methylnaphthalene 2-Methylnaphthalene Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF) Acenaphthylene Acenaphthene Benzo[a]anthracene	Lab Number: g/100g as rcvd mg/kg dry wt mg/kg dry wt	5-0.95 $22-Aug-2018$ 2036105.17 74 < 2 < 0.10 13 3 5.7 7 18 Soil < 0.014 < 0.014 < 0.014 < 0.04 < 0.04 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014	1.3 22-Aug-2018 2036105.18 71 71 4.4 6 16 6 16 6 0.014 < 0.014 < 0.014 < 0.04 < 0.04 < 0.04 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014 < 0.014			

Sample Type: Soil									
	Sample Name:	AME_HA123_0.8 5-0.95 22-Aug-2018	AME_HA123_1.2- 1.3 22-Aug-2018						
	Lab Number:	2036105.17	2036105.18						
Polycyclic Aromatic Hydrocark	oons Screening in S	Soil							
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Benzo[k]fluoranthene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Chrysene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Fluoranthene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Fluorene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Naphthalene	mg/kg dry wt	< 0.07	< 0.07	-	-	-			
Phenanthrene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Pyrene	mg/kg dry wt	< 0.014	< 0.014	-	-	-			
Total of Reported PAHs in Soi	il* mg/kg	< 0.4	< 0.4	-	-	-			

Analyst's Comments

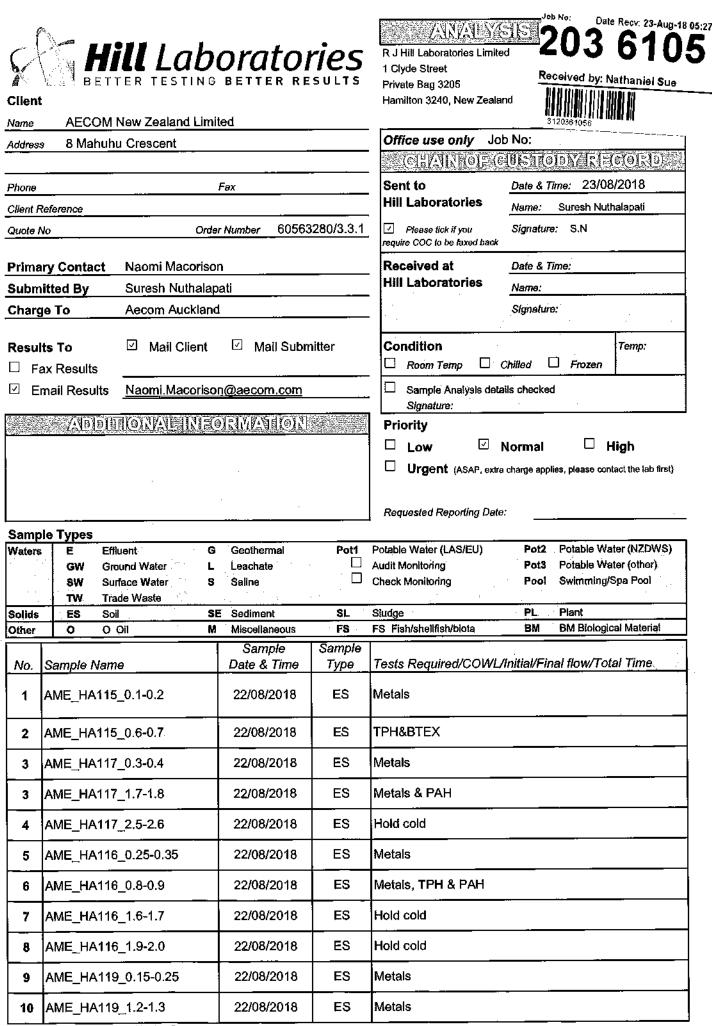
Amended Report: This certificate of analysis replaces an earlier certificate issued on 29 Aug 2018 at 4:50 pm Reason for amendment: VOC analysis added to one sample.

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil							
Test	Method Description	Default Detection Limit	Sample No				
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	-	7				
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1, 3-4, 6-7, 10-11, 13, 16-18				
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis US EPA 8260B. Tested on as received sample [KBIs:5782,26687,3629]	0.05 - 0.10 mg/kg dry wt	2				
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, Dilution or SPE cleanup (if required), GC- MS SIM analysis (modified US EPA 8270). Tested on as received sample. [KBIs:5786,2805,2695]	-	4, 17-18				
Pentachlorophenol Screening in Soil by LCMSMS	Solvent extraction with sonication, dilution, analysis by LCMSMS with online SPE. Tested on dried sample	0.010 mg/kg dry wt	13, 16				
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	2				
Volatile Organic Compounds Screening in Soil by Headspace GC-MS	Sonication extraction, Headspace, GC-MS SIM analysis. Tested on as received sample [KBIs:31662,37857,37921]	-	2				
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	2, 4, 7, 13, 16-18				
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	BaP Potency Equivalence calculated from Benz(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1 + Chrysene x 0.01 + Dibenz(a,h)anthracene x 1 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	4, 7, 17-18				


Sample Type: Soil									
Test	Method Description	Default Detection Limit	Sample No						
Benzo[a]pyrene Toxic Equivalence (TEF)	BaP Toxic Equivalence calculated from Benzo(a)anthracene x 0.1 + BaP x 1 + Benzo(b)fluoranthene x 0.1 + Benzo(k) fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.1 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	4, 7, 17-18						
Total of Reported PAHs in Soil*	Sonication extraction, SPE cleanup, GC-MS SIM analysis.	0.3 mg/kg	4, 7, 17-18						

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

KB Item: 23775 Version: 2

.

No.	Sample Name	Sample Date & Time	Sample Type	Tests Required/COWL/Initial/Final flow/Total Time
	· · · · · · · · · · · · · · · · · · ·			
_	AME_HA119_2.5-2.6	22/08/2018	E\$	
12	AME_HA120_0.4-0.5	22/08/2018	ES	Metals & PCP
13	AME_HA120_1.1-1.2	22/08/2018	ES	Hold cold
14	AME_HA120_1.9-2.0	22/08/2018	EŜ	Hold cold
15	AME_HA123_0.2-0.3	22/08/2018	ES	Metals & PCP
16	AME_HA123_0.85-0.95	22/08/2018	ES	Metals & PAH
17	AME_HA123_1.2-1.3	22/08/2018	ES	Metals & PAH
18	AME_HA123_1.5-1.6	22/08/2018	ES	Hold cold
			· · · · ·	
	· · · · · · · · · · · · · · · · · · ·			
		·		
31	 			
32			<u> </u>	
33	<i>n</i>			
33	·		+ -	
34			. <u> </u>	· · · · · · · · · · · · · · · · · · ·
35	· · · · · · · · · · · · · · · · · · ·			
	<u> </u>	 -		· · · · · · · · · · · · · · · · · · ·
37			 	
38			<u> </u>	
39				
40		<u></u>		

Report Date: 05 Mar 2019

Certificate Number: P1903011105

Analytica Laboratories Ruakura Research Centre, 10 Bisley Road, Private Bag 3123

Client Reference: 19-05381

Dear Karla Chapman,

Re: Asbestos Soil Identification Analysis – 19-05381

5 sample(s) received on 01 Mar 2019 by Julie Saia.

The results of fibre analysis were performed by Georgina Jackson of Analytica Laboratories Limited on 05 Mar 2019.

The sample(s) were stated to be from 19-05381.

Sample analysis was performed using polarised light microscopy with dispersion staining in accordance with AS4964-2004 Method for the qualitative identification of asbestos in soil samples.

The results of the fibre analysis are presented in the appended table.

Should you require further information please contact Georgina Jackson.

Yours sincerely

Georgina Jackson

Georgina Jackson
LABORATORY IDENTIFIER

P1903011105 - **1** of 3

All tests reported

herein have been performed in accordance with the laboratory's scope of accreditation

Sample Analysis Results

Certificate Number: P1903011105 Report Date: 05 Mar 2019 Site Location: 19-05381

Note 1: The reporting limit for this analysis is 0.1g/kg (0.01%) by application of polarised light microscopy, dispersion staining and trace analysis techniques.

Note 2: If mineral fibres of unknown type are detected (UMF), by PLM and dispersion staining, these may or may not be asbestos fibres. To confirm the identity of this fibre, another independent analytical technique such as XRD analysis is advised.

Note 3: The samples in this report are "As Received". The laboratory does not take responsibility for the sampling procedure or accuracy of sample location description. This document may not be reproduced except in full.

Identified by:

Georgina Jackson

Approved Identifier: Georgina Jackson

Reviewed by:

Georgina Jackson

Key Technical Person: Georgina Jackson

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S001	RH_HA1_0.2-0.4	- Non-Homogeneous Soil 144.5g	No Asbestos Detected Organic Fibres
S002	RH_HA4_0.1-0.3	- Non-Homogeneous Soil 119.5g	No Asbestos Detected Organic Fibres
S003	RH_HA4_1.8-2.0	- Non-Homogeneous Soil 124.0g	No Asbestos Detected Organic Fibres
S004	RH_HA12_0.8-1.0	- Non-Homogeneous Soil 103.5g	No Asbestos Detected Organic Fibres
S005	RH_HA7_0.2-0.4	- Non-Homogeneous Soil 134.5g	No Asbestos Detected Organic Fibres

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

P1903011105 - 2 of 3

Appendix 1: Soil Analysis Raw Data

Certificate Number: P1903011105 Report Date: 05 Mar 2019 Site Location: 19-05381

Sample ID	Client Sample ID	Total Sample Weight (g)	ACM Approximate Dimensions (g)*	Form	Trace Asbestos Detected**
S001	RH_HA1_0.2-0.4	144.5	-	-	Ν
S002	RH_HA4_0.1-0.3	119.5	-	-	Ν
S003	RH_HA4_1.8-2.0	124.0	-	-	Ν
S004	RH_HA12_0.8-1.0	103.5	-	-	Ν
S005	RH_HA7_0.2-0.4	134.5	-	-	N

* The reporting limit for this standard is 0.1g/kg

** Trace asbestos present is indicative that freely liberated respirable fibres are present and dust control measures should be implemented or increased

*** Asbestos weights listed in this table are indicative only and are outside of IANZ accreditation and is therefore not endorsed by IANZ.

P: +64 7 974 4740 W: www.analytica.co.nz

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton 3214, New Zealand Ph +64 (07) 974 4740 sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

AECOM New Zealand Ltd PO Box 4241, Shortland Street Auckland 1140 Attention: Matthew Hartley Phone: 021 562538 Email: matthew.hartley@aecom.com

Sampling Site: Ameti Riverhills

Report Comments

Samples were collected by yourselves (or your agent) and analysed as received at Analytica Laboratories. Samples were in acceptable condition unless otherwise noted on this report.

Lab Reference:

Date Received:

Order Number:

Reference:

Date Completed: 7/03/2019

Submitted by:

19-05381

25/02/2019

60563280

Max Nightingale & Chad Salbert

Heavy Metals in Soil

Client Sample ID			RH_HA1_0.2-0.4	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA10_0.3-0. 5	RH_HA11_0.2-0. 4
Date Sampled							
Analyte	Unit	Reporting Limit	19-05381-1	19-05381-12	19-05381-13	19-05381-17	19-05381-20
Arsenic	mg/kg dry wt	0.125	1.60	6.48	1.79	1.14	2.11
Beryllium	mg/kg dry wt	0.013	0.60	0.54	0.52	0.73	0.34
Boron	mg/kg dry wt	1.25	1.28	2.08	1.52	<1.25	1.35
Cadmium	mg/kg dry wt	0.005	0.024	0.15	0.031	0.035	0.045
Chromium	mg/kg dry wt	0.125	16.4	30.0	24.9	29.2	20.3
Copper	mg/kg dry wt	0.075	6.32	10.3	10.8	5.72	6.78
Lead	mg/kg dry wt	0.05	8.65	14.8	6.94	10.9	6.73
Mercury	mg/kg dry wt	0.025	0.074	0.12	0.053	0.078	0.041
Nickel	mg/kg dry wt	0.05	12.7	14.0	18.1	18.0	10.5
Zinc	mg/kg dry wt	0.05	21.7	40.4	28.1	25.9	20.0

Heavy Metals in Soil

Client Sample ID			RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8
Date Sampled							
Analyte	Unit	Reporting Limit	19-05381-23	19-05381-24	19-05381-26	19-05381-28	19-05381-29
Arsenic	mg/kg dry wt	0.125	3.81	1.17	1.26	5.02	1.95
Beryllium	mg/kg dry wt	0.013	0.62	0.28	0.34	0.57	0.40
Boron	mg/kg dry wt	1.25	1.90	<1.25	<1.25	1.43	1.35
Cadmium	mg/kg dry wt	0.005	0.12	0.017	0.015	0.12	0.023

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked *, which are not accredited.

Report Date 7/03/2019

Heavy Metals in Soil

Client Sample ID			RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8
Date Sampled							
Chromium	mg/kg dry wt	0.125	30.8	16.1	20.7	25.4	18.1
Copper	mg/kg dry wt	0.075	9.40	5.68	5.25	8.18	4.36
Lead	mg/kg dry wt	0.05	11.0	4.66	6.03	11.6	9.26
Mercury	mg/kg dry wt	0.025	0.059	0.033	0.12	0.072	0.058
Nickel mg/kg dry wt 0.05			15.1	7.88	9.80	13.7	11.4
Zinc	mg/kg dry wt	0.05	34.0	14.6	12.8	33.7	16.8

Volatile Organic Compounds - Soil

	Clien	t Sample ID	RH_HA1_0.2-0.4	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA10_0.3-0. 5	RH_HA11_0.2-0. 4
	Da	te Sampled					
Analyte	Unit	Reporting Limit	19-05381-1	19-05381-12	19-05381-13	19-05381-17	19-05381-20
1,2-Dichloropropane	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
2,2-Dichloropropane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cis-1,3- Dichloropropene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Trans-1,3- Dichloropropene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,2-Dibromoethane	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carbon disulfide	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Vinyl acetate	mg/kg dry wt	0.50	<0.50	<0.50	<0.50	<0.50	<0.50
4-Methyl-2-pentanone (MIBK)	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Hexanone	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methoxy-2- methylpropane (MTBE)	mg/kg dry wt	0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Benzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Toluene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
m,p-Xylene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Styrene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Isopropylbenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
n-Propylbenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,3,5-Trimethylbenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
sec-Butylbenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,2,4-Trimethylbenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
tert-Butylbenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
p-Isopropyltoluene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
n-Butylbenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Naphthalene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Bromobenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
2-Chlorotoluene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
4-Chlorotoluene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,2-Dichlorobenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,3-Dichlorobenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,4-Dichlorobenzene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,4-Dioxane	mg/kg dry wt	1.00	<1.00	<1.00	<1.00	<1.00	<1.00
1,2,3-Trichlorobenzene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2,4-Trichlorobenzene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Carbon tetrachloride	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054

	Client	Sample ID	RH_HA1_0.2-0.4	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA10_0.3-0. 5	RH_HA11_0.2-0. 4
	Da	te Sampled					
Methylene chloride	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,2-Dichloroethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Acetone	mg/kg dry wt	5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trans-1,2- Dichloroethene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Cis-1,2-Dichloroethene	mg/kg dry wt	0.05	<0.064	<0.06	< 0.07	<0.063	<0.054
1,1,1-Trichloroethane	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Trichloroethene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Dibromomethane	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
lodomethane	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
2-Chloroethyl vinyl ether	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,1,2-Trichloroethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1-Dichloropropene	mg/kg dry wt	0.05	<0.064	<0.06	< 0.07	<0.063	<0.054
1,3-Dichloropropane	mg/kg dry wt	0.05	<0.064	< 0.06	<0.07	<0.063	<0.054
Tetrachloroethene	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
1,1,1,2- Tetrachloroethane	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2,2- Tetrachloroethane	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2,3-Trichloropropane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dibromo-3- chloropropane	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Hexachlorobutadiene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloroform	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	0.09	<0.054
Bromodichloromethane	mg/kg dry wt	0.05	<0.064	<0.06	<0.07	<0.063	<0.054
Dibromochloromethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Bromoform	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Dichlorodifluoro methane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloromethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Vinyl chloride	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Bromomethane	mg/kg dry wt	0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chloroethane	mg/kg dry wt	0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trichlorofluoromethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichloroethane-d4 (Surrogate)	%	1	89.1	91.8	89.0	128.7	89.9
p-Bromofluorobenzene (Surrogate)	%	1	100.4	98.7	102.8	105.7	97.6
Toluene-d8 (Surrogate)	%	1	99.5	99.2	101.0	102.6	100.7

Volatile Organic Compounds - Soil

Client Sample ID			RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8
Date Sampled							
Analyte	Unit	Reporting Limit	19-05381-23	19-05381-24	19-05381-26	19-05381-28	19-05381-29
1,2-Dichloropropane	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
2,2-Dichloropropane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cis-1,3- Dichloropropene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Trans-1,3- Dichloropropene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068

Report ID 19-05381-[R00]

Report Date 7/03/2019

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8
	Da	te Sampled					
1,2-Dibromoethane	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carbon disulfide	mg/kg dry wt	0.05	<0.058	<0.1	<0.1	<0.064	<0.1
Vinyl acetate	mg/kg dry wt	0.50	<0.038	<0.000	<0.50	<0.004	<0.008
4-Methyl-2-pentanone	mg/kg dry wt	0.20	<0.20	<0.20	<0.30	<0.30	<0.20
(MIBK) 2-Hexanone	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Methoxy-2-			<0.10	<0.10			<0.10
methylpropane (MTBE)	mg/kg dry wt	0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Benzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Toluene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
m,p-Xylene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Styrene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Isopropylbenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
n-Propylbenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,3,5-Trimethylbenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
sec-Butylbenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,2,4-Trimethylbenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
tert-Butylbenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
p-Isopropyltoluene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
n-Butylbenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Naphthalene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Bromobenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
2-Chlorotoluene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
4-Chlorotoluene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,2-Dichlorobenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,3-Dichlorobenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,4-Dichlorobenzene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,4-Dioxane	mg/kg dry wt	1.00	<1.00	<1.00	<1.00	<1.00	<1.00
1,2,3-Trichlorobenzene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2,4-Trichlorobenzene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Carbon tetrachloride	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Methylene chloride	mg/kg dry wt	0.20	<0.20	<0.000	<0.20	<0.20	<0.008
1,1-Dichloroethane		0.05	<0.058	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	mg/kg dry wt mg/kg dry wt	0.05	<0.038	<0.088	<0.037	<0.004	<0.008
,							
Acetone Trans-1,2-	mg/kg dry wt	5.0 0.05	<5.0	<5.0	<5.0	<5.0	<5.0
Dichloroethene				<0.066		<0.064	<0.068
Cis-1,2-Dichloroethene	mg/kg dry wt	0.05	<0.058		<0.057		
1,1,1-Trichloroethane	mg/kg dry wt	0.05	< 0.058	<0.066	<0.057	<0.064	<0.068
Trichloroethene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Dibromomethane	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
lodomethane	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethene 2-Chloroethyl vinyl	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
ether	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,1,2-Trichloroethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1-Dichloropropene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,3-Dichloropropane	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Tetrachloroethene	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
1,1,1,2- Tetrachloroethane	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20

	Client	t Sample ID	RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8
Date Sampled							
1,1,2,2- Tetrachloroethane	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2,3-Trichloropropane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dibromo-3- chloropropane	mg/kg dry wt	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Hexachlorobutadiene	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloroform	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Bromodichloromethane	mg/kg dry wt	0.05	<0.058	<0.066	<0.057	<0.064	<0.068
Dibromochloromethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Bromoform	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Dichlorodifluoro methane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloromethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Vinyl chloride	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Bromomethane	mg/kg dry wt	0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chloroethane	mg/kg dry wt	0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trichlorofluoromethane	mg/kg dry wt	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichloroethane-d4 (Surrogate)	%	1	90.0	95.2	91.2	89.2	93.6
p-Bromofluorobenzene (Surrogate)	%	1	96.6	98.4	96.8	100.3	101.2
Toluene-d8 (Surrogate)	%	1	99.2	96.1	101.0	100.5	100.5

Semivolatile Organic Compounds - Soil

	Client Sample ID			RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA10_0.3-0. 5	RH_HA11_0.2-0. 4
Analyte	Unit	Reporting Limit	19-05381-1	19-05381-12	19-05381-13	19-05381-17	19-05381-20
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
Naphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Phenylphenol	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

	Clion	t Comple ID	RH_HA1_0.2-0.4	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA10_0.3-0.	RH_HA11_0.2-0.
	Clien	t Sample ID				5	4
	Da	te Sampled					
Benzo[a]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-ethylhexyl) adipate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[b]fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[k]fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg dry wt	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	0.2	0.2	0.2	0.2	0.2
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	RH_HA1_0.2-0.4	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA10_0.3-0. 5	RH_HA11_0.2-0. 4
	Da	te Sampled					
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	87.4	87.9	84.2	85.6	95.1
2-Fluorophenol (Surrogate)	%	1	94.3	97.2	87.8	91.2	99.6
2-Fluorobiphenyl (Surrogate)	%	1	102.7	97.5	95.8	103.2	98.1
2,4,6-Tribromophenol (Surrogate)	%	1	26.0	43.3	56.1	42.3	50.2
p-Terphenyl-d14 (Surrogate)	%	1	88.7	95.9	97.8	95.7	97.0
Nitrobenzene-d5 (Surrogate)	%	1	87.8	93.2	92.4	91.6	89.4

Semivolatile Organic Compounds - Soil

	Client Sample ID			RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8
	Da	te Sampled					
Analyte	Unit	Reporting Limit	19-05381-23	19-05381-24	19-05381-26	19-05381-28	19-05381-29
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5

	Client	t Sample ID	RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8
	Da	te Sampled					
Naphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Phenylphenol	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-ethylhexyl) adipate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo[b]fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[k]fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg dry wt	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	0.2	0.2	0.2	0.2	0.2
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3

	Client Sample ID		RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8
	Da	te Sampled					
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	88.7	90.0	89.4	88.9	80.1
2-Fluorophenol (Surrogate)	%	1	89.5	103.1	94.7	95.9	89.2
2-Fluorobiphenyl (Surrogate)	%	1	95.6	98.0	98.0	97.2	97.9
2,4,6-Tribromophenol (Surrogate)	%	1	47.8	51.9	49.3	56.6	55.3
p-Terphenyl-d14 (Surrogate)	%	1	96.0	96.3	95.2	97.0	95.1
Nitrobenzene-d5 (Surrogate)	%	1	92.3	94.5	92.3	90.8	93.7

Total Petroleum Hydrocarbons - Soil

Client Sample ID		RH_HA1_0.2-0.4	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA10_0.3-0. 5	RH_HA11_0.2-0. 4	
	Da	te Sampled					
Analyte	Unit	Reporting Limit	19-05381-1	19-05381-12	19-05381-13	19-05381-17	19-05381-20
C7-C9	mg/kg dry wt	10	<10	<10	<10	<10	<10
C10-C14	mg/kg dry wt	15	<15	<15	<15	<15	<15
C15-C36	mg/kg dry wt	25	<25	<25	<25	<25	<25
C7-C36 (Total)	mg/kg dry wt	50	<50	<50	<50	<50	<50

Total Petroleum Hydrocarbons - Soil

Client Sample ID		RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8	
	Da	te Sampled					
Analyte	Unit	Reporting Limit	19-05381-23	19-05381-24	19-05381-26	19-05381-28	19-05381-29
C7-C9	mg/kg dry wt	10	<10	<10	<10	<10	<10
C10-C14	mg/kg dry wt	15	<15	<15	<15	<15	<15
C15-C36	mg/kg dry wt	25	<25	<25	<25	62	<25
C7-C36 (Total)	mg/kg dry wt	50	<50	<50	<50	62	<50

Moisture Content

Client Sample ID		RH_HA1_0.2-0.4	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA10_0.3-0. 5	RH_HA11_0.2-0. 4
[ate Sampled					
Analyte Uni	Reporting Limit	19-05381-1	19-05381-12	19-05381-13	19-05381-17	19-05381-20
Moisture Content %	1	19	15	29	20	13

Moisture Content

Client Sample ID		RH_HA12-0.1-0.3	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4	RH_HA9_0.2-0.4	RH_HA9_0.6-0.8	
	Da	te Sampled					
Analyte	Unit	Reporting Limit	19-05381-23	19-05381-24	19-05381-26	19-05381-28	19-05381-29
Moisture Content	%	1	12	18	14	13	23

Asbestos in Soil (Qualitative)

Client Sample ID		RH_HA1_0.2-0.4	RH_HA4_0.1-0.3	RH_HA4_1.8-2.0	RH_HA12_0.8-1. 0	RH_HA7_0.2-0.4
	Date Sampled					
Analyte Un	t Reporting Limit	19-05381-1	19-05381-12	19-05381-13	19-05381-24	19-05381-26
Asbestos in Soil (Qualitative)		Complete	Complete	Complete	Complete	Complete

Total Heavy Metals in Water

	Clien	t Sample ID	RH_MW1	RH_MWD
	Date Sampled			
Analyte	Unit	Reporting Limit	19-05381-30	19-05381-31
Arsenic	g/m ³	0.0005	0.0019	0.0018
Beryllium	g/m ³	0.00001	0.00006	0.00005
Boron	g/m ³	0.005	0.046	0.045
Cadmium	g/m ³	0.00001	0.00002	0.00002
Chromium	g/m ³	0.0002	0.0030	0.0018
Copper	g/m ³	0.0002	0.0051	0.0053
Lead	g/m ³	0.00005	0.00161	0.00139
Mercury	g/m ³	0.0001	<0.0001	<0.0001
Nickel	g/m ³	0.0002	0.0039	0.0034
Zinc	g/m ³	0.001	0.011	0.015

Semivolatile Organic Compounds - Water

	Client	t Sample ID	RH_MW1	RH_MWD
	Da	te Sampled		
Analyte	Unit	Reporting Limit	19-05381-30	19-05381-31
Phenol	g/m ³	0.002	<0.0020	<0.0020
2-Chlorophenol	g/m ³	0.0003	<0.0003	<0.0003
2-Methylphenol	g/m ³	0.0003	<0.0003	<0.0003
2-Nitrophenol	g/m ³	0.0005	<0.0005	<0.0005
2,4-Dimethylphenol	g/m ³	0.0010	<0.0010	<0.0010
2,4-Dichlorophenol	g/m ³	0.0003	<0.0003	<0.0003
2,6-Dichlorophenol	g/m ³	0.0003	<0.0003	<0.0003
4-Chloro-3- methylphenol	g/m ³	0.0003	<0.0003	<0.0003
2,4,5-Trichlorophenol	g/m ³	0.0005	<0.0005	<0.0005
2,4,6-Trichlorophenol	g/m ³	0.0005	<0.0005	<0.0005
2,3,4,6- Tetrachlorophenol	g/m ³	0.0003	<0.0003	<0.0003
4-Methylphenol	g/m ³	0.0003	<0.0003	<0.0003
4-Nitrophenol	g/m ³	0.0010	<0.0010	<0.0010
Naphthalene	g/m ³	0.0003	<0.0003	<0.0003
2-Methylnaphthalene	g/m ³	0.0003	<0.0003	<0.0003
2-Chloronaphthalene	g/m ³	0.0003	<0.0003	<0.0003
Acenaphthylene	g/m ³	0.0003	<0.0003	<0.0003
Acenaphthene	g/m ³	0.0003	<0.0003	< 0.0003
Fluorene	g/m ³	0.0003	<0.0003	< 0.0003
Phenanthrene	g/m ³	0.0003	<0.0003	< 0.0003
Anthracene	g/m ³	0.0003	<0.0003	< 0.0003
2-Phenylphenol	g/m ³	0.005	<0.005	<0.005
Fluoranthene	g/m ³	0.0003	<0.0003	<0.0003
Benzo[a]anthracene	g/m ³	0.0003	<0.0003	< 0.0003
Chrysene	g/m ³	0.0003	<0.0003	< 0.0003
Bis(2-ethylhexyl) adipate	g/m ³	0.005	<0.005	<0.005
Benzo[b]fluoranthene	g/m ³	0.0005	<0.0005	< 0.0005
Benzo[k]fluoranthene	g/m ³	0.0005	<0.0005	< 0.0005
Benzo[a]pyrene	g/m ³	0.0003	<0.0003	< 0.0003
Indeno(1,2,3-c,d)pyrene	g/m ³	0.0003	<0.0003	< 0.0003
Dibenzo[a,h]anthracene	g/m ³	0.0003	<0.0003	< 0.0003
Benzo[g,h,i]perylene	g/m ³	0.0003	<0.0003	< 0.0003
Pyrene	g/m ³	0.0003	<0.0003	< 0.0003
Benzo[a]pyrene TEQ (LOR)	g/m ³	0.0003	0.0008	0.0008
Benzo[a]pyrene TEQ (Zero)	g/m³	0.0003	<0.0003	<0.0003
4,4'-DDD	g/m ³	0.0005	<0.0005	<0.0005
4,4'-DDE	g/m ³	0.0003	<0.0003	<0.0003
4,4'-DDT	g/m ³	0.0010	<0.0010	<0.0010
alpha-BHC	g/m ³	0.0003	<0.0003	<0.0003
beta-BHC	g/m ³	0.0003	<0.0003	<0.0003
gamma-BHC	g/m ³	0.0003	<0.0003	<0.0003
delta-BHC	g/m ³	0.0003	<0.0003	<0.0003
Aldrin	g/m ³	0.0005	<0.0005	<0.0005
cis-Chlordane		0.0003	<0.0003	<0.0003
trans-Chlordane	g/m ³	0.0005	<0.0005	<0.0005
Dieldrin	g/m ³	0.0005	<0.0005	<0.0005
Endosulfan I		0.0010	<0.0010	<0.0010
Endosulfan II	g/m ³	0.0010	<0.0010	<0.0010
Endosulfan sulphate	g/m ³	0.0005	<0.0005	<0.0005
	9/11	0.0000	~0.0000	

Semivolatile Organic Compounds - Water

	Client	Sample ID	RH_MW1	RH_MWD
	Da	te Sampled		
Endrin	g/m ³	0.0010	<0.0010	<0.0010
Endrin aldehyde	g/m ³	0.0003	<0.0003	< 0.0003
Endrin ketone	g/m ³	0.0003	<0.0003	< 0.0003
Hexachlorobenzene	g/m ³	0.0003	<0.0003	< 0.0003
Heptachlor	g/m ³	0.0003	<0.0003	<0.0003
Heptachlor epoxide	g/m ³	0.0003	< 0.0003	<0.0003
Methoxychlor	g/m ³	0.0003	<0.0003	<0.0003
Bis(2-ethylhexyl)	0			
phthalate	g/m ³	0.010	<0.010	<0.010
Butyl benzyl phthalate	g/m ³	0.0010	<0.0010	<0.0010
Di-n-butyl phthalate	g/m ³	0.010	<0.010	<0.010
Di-n-octyl phthalate	g/m ³	0.0005	<0.0005	<0.0005
Diethyl phthalate	g/m ³	0.0020	<0.0020	<0.0020
Dimethyl phthalate	g/m ³	0.0003	<0.002	<0.002
N-Nitrosodiphenylamine	g/m ³	0.0003	<0.0003	<0.0003
N-Nitrosodi-n- propylamine	g/m ³	0.0003	<0.0003	<0.0003
2,4-Dinitrotoluene	g/m ³	0.0010	<0.0010	<0.0010
2,6-Dinitrotoluene	g/m ³	0.0010	<0.0010	<0.0010
Azobenzene	g/m ³	0.0003	<0.0003	<0.0003
Isophorone	g/m ³	0.0003	<0.0003	<0.0003
Nitrobenzene	g/m ³	0.0003	<0.0003	<0.0003
4-Bromophenyl phenyl ether	g/m ³	0.0003	<0.0003	<0.0003
4-Chlorophenyl phenyl	g/m ³	0.0003	<0.0003	<0.0003
ether	-	0.0000	-0.0002	-0.0002
Bis(2-Chloroethyl) ether	g/m ³	0.0003	<0.0003	<0.0003
Bis(2-Chloro-1- methylethyl) ether	g/m ³	0.0003	<0.0003	<0.0003
Bis(2-Chloroethoxy) methane	g/m ³	0.0003	<0.0003	<0.0003
1,2-Dichlorobenzene	g/m ³	0.0003	<0.0003	<0.0003
1,3-Dichlorobenzene	g/m³	0.0003	<0.0003	<0.0003
1,4-Dichlorobenzene	g/m ³	0.0003	<0.0003	<0.0003
Hexachlorobutadiene	g/m ³	0.0003	<0.0003	<0.0003
Hexachlorocylopenta diene	g/m ³	0.0003	<0.0003	<0.0003
Hexachloroethane	g/m ³	0.0003	<0.0003	< 0.0003
4-Chloroaniline	g/m ³	0.0005	<0.0005	<0.0005
2-Nitroaniline	g/m ³	0.0005	<0.0005	<0.0005
3-Nitroaniline	g/m ³	0.0003	<0.0003	<0.0003
3,3'-Dichlorobenzidine	g/m ³	0.0005	<0.0005	<0.0005
Dibenzofuran	g/m ³	0.0003	<0.0003	<0.0003
Methyl	g/m ³	0.0003	<0.0003	<0.0003
methanesulfonate	Ũ			
Ethyl methanesulfonate	g/m ³	0.010	<0.0100	<0.0100
Benzyl alcohol	g/m ³	0.0003	< 0.0003	<0.0003
Phenol-d5 (Surrogate)	%	1	82.8	93.0
2-Fluorophenol (Surrogate)	%	1	102.5	115.1
2-Fluorobiphenyl (Surrogate)	%	1	99.0	95.7
2,4,6-Tribromophenol (Surrogate)	%	1	230.1	240.8
p-Terphenyl-d14 (Surrogate)	%	1	148.8	139.8
Nitrobenzene-d5 (Surrogate)	%	1	123.2	127.1

Volatile Organic Compounds - Water

	Client	Sample ID	RH_MW1	RH_MWD
	Da	te Sampled		
Analyte	Unit	Reporting Limit	19-05381-30	19-05381-31
1,2-Dichloropropane	g/m³	0.0005	<0.0005	<0.0005
2,2-Dichloropropane	g/m ³	0.002	<0.002	<0.002
Cis-1,3- Dichloropropene	g/m³	0.001	<0.001	<0.001
Trans-1,3- Dichloropropene	g/m³	0.001	<0.001	<0.001
1,2-Dibromoethane	g/m ³	0.0005	<0.0005	<0.0005
Carbon disulfide	g/m ³	0.001	<0.001	<0.001
Vinyl acetate	g/m ³	0.008	<0.008	<0.008
4-Methyl-2-pentanone (MIBK)	g/m³	0.001	<0.001	<0.001
2-Hexanone	g/m ³	0.008	<0.008	<0.008
2-Methoxy-2- methylpropane (MTBE)	g/m ³	0.005	<0.005	<0.005
Benzene	g/m ³	0.001	<0.001	<0.001
Toluene	g/m ³	0.001	<0.001	<0.001
Ethylbenzene	g/m ³	0.001	<0.001	<0.001
m,p-Xylene	g/m ³	0.001	<0.001	<0.001
o-Xylene	g/m ³	0.001	<0.001	< 0.001
Styrene	g/m ³	0.001	<0.001	< 0.001
Isopropylbenzene	g/m ³	0.001	<0.001	<0.001
n-Propylbenzene	g/m ³	0.001	<0.001	<0.001
1,3,5-Trimethylbenzene	g/m ³	0.001	<0.001	<0.001
sec-Butylbenzene	g/m ³	0.001	<0.001	<0.001
1,2,4-Trimethylbenzene	g/m ³	0.001	<0.001	<0.001
tert-Butylbenzene	g/m ³	0.001	<0.001	<0.001
p-Isopropyltoluene	g/m ³	0.001	<0.001	<0.001
n-Butylbenzene	g/m ³	0.001	<0.001	<0.001
Naphthalene	g/m ³	0.002	<0.001	<0.001
Chlorobenzene	g/m ³	0.0005	<0.002	<0.002
Bromobenzene	g/m ³	0.000	<0.0003	<0.001
2-Chlorotoluene	g/m ³	0.001	< 0.001	< 0.001
4-Chlorotoluene	g/m ³	0.001	<0.001	<0.001
1,2-Dichlorobenzene	g/m ³	0.001	<0.001	<0.001
1,3-Dichlorobenzene	g/m ³	0.001	<0.001	<0.001
1,4-Dichlorobenzene	g/m ³	0.001	<0.001	<0.001
1,4-Dioxane	g/m ³	0.02	<0.02	<0.02
1,2,3-Trichlorobenzene	g/m ³	0.002	<0.002	<0.002
1,2,4-Trichlorobenzene	g/m ³	0.002	<0.002	<0.002
Carbon tetrachloride	g/m ³	0.001	<0.001	<0.001
Methylene chloride	g/m ³	0.002	<0.002	<0.002
1,1-Dichloroethane	g/m ³	0.0005	<0.0005	<0.0005
1,2-Dichloroethane	g/m ³	0.001	<0.001	<0.001
Acetone	g/m ³	0.25	<0.25	<0.25
Trans-1,2- Dichloroethene	g/m ³	0.001	<0.001	<0.001
Cis-1,2-Dichloroethene	g/m ³	0.001	<0.001	<0.001
1,1,1-Trichloroethane	g/m ³	0.0005	<0.0005	<0.0005
Trichloroethene	g/m ³	0.0005	<0.0005	<0.0005
Dibromomethane	g/m ³	0.001	<0.001	<0.001
lodomethane	g/m ³	0.0005	<0.0005	<0.0005
1,1-Dichloroethene	g/m ³	0.001	<0.001	< 0.001

Volatile Organic Compounds - Water

	Client	Sample ID	RH_MW1	RH_MWD
	Da	te Sampled		
2-Chloroethyl vinyl ether	g/m³	0.008	<0.008	<0.008
1,1,2-Trichloroethane	g/m ³	0.001	<0.001	<0.001
1,1-Dichloropropene	g/m ³	0.001	<0.001	<0.001
1,3-Dichloropropane	g/m ³	0.0005	<0.0005	<0.0005
Tetrachloroethene	g/m ³	0.001	<0.001	<0.001
1,1,1,2- Tetrachloroethane	g/m³	0.001	<0.001	<0.001
1,1,2,2- Tetrachloroethane	g/m ³	0.005	<0.005	<0.005
1,2,3-Trichloropropane	g/m ³	0.001	<0.001	<0.001
1,2-Dibromo-3- chloropropane	g/m ³	0.008	<0.008	<0.008
Hexachlorobutadiene	g/m ³	0.002	<0.002	<0.002
Chloroform	g/m ³	0.001	<0.001	<0.001
Bromodichloromethane	g/m ³	0.0005	<0.0005	<0.0005
Dibromochloromethane	g/m ³	0.001	<0.001	<0.001
Bromoform	g/m ³	0.001	<0.001	<0.001
Dichlorodifluoro methane	g/m ³	0.001	<0.001	<0.001
Chloromethane	g/m ³	0.001	<0.001	<0.001
Vinyl chloride	g/m ³	0.001	<0.001	<0.001
Bromomethane	g/m ³	0.008	<0.008	<0.008
Chloroethane	g/m ³	0.008	<0.008	<0.008
Trichlorofluoromethane	g/m ³	0.001	<0.001	<0.001
1,2-Dichloroethane-d4 (Surrogate)	%	1	96.6	94.2
p-Bromofluorobenzene (Surrogate)	%	1	100.1	101.8
Toluene-d8 (Surrogate)	%	1	99.2	100.2

Total Petroleum Hydrocarbons - Water

Client Sample ID			RH_MW1	RH_MWD	RH_MWB1	RH_MWB2
	Da	te Sampled				
Analyte	Unit	Reporting Limit	19-05381-30	19-05381-31	19-05381-32	19-05381-33
C7-C9	g/m ³	0.2	<0.2	<0.2	<0.2	<0.2
C10-C14	g/m ³	0.2	<0.2	<0.2	<0.2	<0.2
C15-C36	g/m ³	0.3	<0.3	<0.3	<0.3	<0.3
C7-C36 (Total)	g/m ³	0.5	<0.5	<0.5	<0.5	<0.5

Method Summary

Elements in Soil	Acid digestion followed by ICP-MS analysis. (US EPA method 200.8). Results are based on a dried sample passed through a 2 mm sieve.
VOC in Soil	Methanol extraction using US-EPA 5030A, analysis by US-EPA Method 5021A (modified) using GCMS with headspace sample introduction.
SVOC in Soil	Solvent extraction, followed by GC-MS analysis.(In-house based on US EPA 8270).
TPH in Soil	Solvent extraction, silica cleanup, followed by GC-FID analysis. (C7-C36)
Moisture	Moisture content is determined gravimetrically by drying at 103 °C.
Recoverable Trace Elements	Samples were analysed as received by the laboratory using ICP-MS following an acid digestion. US EPA method 200.8.

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

Method Summary

SVOC in Water Dichloromethane extraction followed by GC-MS analysis. (In-house method based on US-EPA 8270).

VOC in Water Analysis by US-EPA Method 5021A (modified) using GCMS analysis with headspace sample introduction.

TPH in WaterSolvent extraction, silica cleanup, followed by GC-FID analysis (C7-C36). MFE Petroleum Industry
Guidelines.

Élizabeth Fitzgerald, B.Sc. Inorganics Team Leader

Tom Featonby, M.Sc. Technologist

Nathan Howse, B.Sc. Senior Technician

Sharelle Frank, B.Sc. (Tech) Technologist

Page 1 of 5

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	1979897	SPv1
Contact:	N Macorison	Date Received:	11-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	22-May-2018	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.7.5	
	Auckland 1140	Client Reference:	60563280/3.7.5	
		Submitted By:	Max Nightingale	

Sample Type: Soil					
Sample Name		SAH010_1.6 09-May-2018 9:00 am	SAH011_0.5 09-May-2018 11:45 am	SAH011_1.0 [12:00-12:15] 09-May-2018	SAH012_0.5 09-May-2018 1:00 pm
Lab Number	1979897.1	1979897.4	1979897.6	1979897.7	1979897.10
Individual Tests					
Dry Matter g/100g as rcv	d 72	-	76	-	-
Heavy Metals, Screen Level		1			
Total Recoverable Arsenic mg/kg dry w	t 2	3	2	3	< 2
Total Recoverable Cadmium mg/kg dry w	t < 0.10	< 0.10	< 0.10	< 0.10	0.24
Total Recoverable Chromium mg/kg dry w	t 16	26	23	22	41
Total Recoverable Copper mg/kg dry w	t 7	12	11	9	14
Total Recoverable Lead mg/kg dry w	t 8.3	9.6	6.8	6.8	20
Total Recoverable Nickel mg/kg dry w	t 8	12	10	9	34
Total Recoverable Zinc mg/kg dry w	t 16	35	27	22	53
New Zealand Guidelines Semi Quantitative Ast	estos in Soil				
As Received Weight	g -	-	814.8	-	827.0
Dry Weight	g -	-	605.2	-	538.2
Ashed Weight	g -	-	592.2	-	512.4
Moisture 9	6 -	-	26	-	35
Dry Sample Fraction >10mm g ashed w	t -	-	< 0.1	-	75.0
Sample Fraction <10mm to >2mm g ashed w	t -	-	348.3	-	227.9
Sample Fraction <2mm g ashed w	t -	-	242.2	-	207.5
<2mm Subsample Weight g ashed w	t -	-	55.2	-	53.4
Asbestos Presence / Absence	-	-	Asbestos NOT detected.	-	Asbestos NOT detected.
Description of Asbestos Form	-	-	-	-	-
Weight of Asbestos in ACM (Non- g ashed w Friable)	t -	-	< 0.00001	-	< 0.00001
Asbestos in ACM as % of Total % w/v Sample*	v -	-	< 0.001	-	< 0.001
Weight of Asbestos as Fibrous g ashed w Asbestos (Friable)	t -	-	< 0.00001	-	< 0.00001
Asbestos as Fibrous Asbestos as % of % w/v Total Sample*	v -	-	< 0.001	-	< 0.001
Weight of Asbestos as Asbestos g ashed w Fines (Friable)*	t -	-	< 0.00001	-	< 0.00001
Asbestos as Asbestos Fines as % of % w/v Total Sample*	v -	-	< 0.001	-	< 0.001
Combined Fibrous Asbestos + % w/v Asbestos Fines as % of Total Sample*	v -	-	< 0.001	-	< 0.001

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sample Type: Soil	Comula Nome	SAH010_0.2	SAH010 1 6	SAH011 0.5	SAH011 1 0	SAH012 0 5
	Sample Name:	_	SAH010_1.6 09-May-2018 9:00 am	SAH011_0.5 09-May-2018 11:45 am	SAH011_1.0 [12:00-12:15] 09-May-2018	SAH012_0.5 09-May-2018 1:00 pm
	Lab Number:	1979897.1	1979897.4	1979897.6	1979897.7	1979897.10
Organochlorine Pesticides S						
Aldrin	mg/kg dry wt	< 0.014	-	-	-	_
alpha-BHC	mg/kg dry wt	< 0.014	-	-	_	
beta-BHC	mg/kg dry wt	< 0.014	_	_	_	
delta-BHC	mg/kg dry wt	< 0.014	_	-	_	
gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	_			
cis-Chlordane	mg/kg dry wt	< 0.014	_	-	_	
trans-Chlordane	mg/kg dry wt	< 0.014	-	-		-
Total Chlordane [(cis+trans)*		< 0.04	-	-		
100/42]						
2,4'-DDD	mg/kg dry wt	< 0.014	-	-	-	-
4,4'-DDD	mg/kg dry wt	< 0.014	-	-	-	-
2,4'-DDE	mg/kg dry wt	< 0.014	-	-	-	-
4,4'-DDE	mg/kg dry wt	< 0.014	-	-	-	-
2,4'-DDT	mg/kg dry wt	< 0.014	-	-	-	-
4,4'-DDT	mg/kg dry wt	< 0.014	-	-	-	-
Total DDT Isomers	mg/kg dry wt	< 0.09	-	-	-	-
Dieldrin	mg/kg dry wt	< 0.014	-	-	-	-
Endosulfan I	mg/kg dry wt	< 0.014	-	-	-	-
Endosulfan II	mg/kg dry wt	< 0.014	-	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.014	-	-	-	-
Endrin	mg/kg dry wt	< 0.014	-	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.014	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.014	-	-	-	-
Heptachlor	mg/kg dry wt	< 0.014	-	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.014	-	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.014	-	-	-	-
Methoxychlor	mg/kg dry wt	< 0.014	-	-	-	-
Haloethers in SVOC Soil Sa	mples by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	-	-	< 0.5	-	-
Bis(2-chloroethyl)ether	mg/kg dry wt	-	-	< 0.5	-	-
Bis(2-chloroisopropyl)ether	mg/kg dry wt	-	-	< 0.5	-	-
4-Bromophenyl phenyl ether	mg/kg dry wt	-	-	< 0.4	-	-
4-Chlorophenyl phenyl ether	mg/kg dry wt	-	-	< 0.5	-	-
Nitrogen containing compour	nds in SVOC Soil S	amples by GC-MS				
2,4-Dinitrotoluene	mg/kg dry wt	-	-	< 1.0	-	-
2,6-Dinitrotoluene	mg/kg dry wt	-	-	< 1.0	-	-
Nitrobenzene	mg/kg dry wt	-	-	< 0.5	-	-
N-Nitrosodi-n-propylamine	mg/kg dry wt	-	-	< 0.8	-	-
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	-	-	< 0.8	-	-
Organochlorine Pesticides ir	NSVOC Soil Sample	s by GC-MS			1	
Aldrin	mg/kg dry wt	-	-	< 0.5	-	-
alpha-BHC	mg/kg dry wt	-	-	< 0.5	-	-
beta-BHC	mg/kg dry wt	-	-	< 0.5	-	-
delta-BHC	mg/kg dry wt	-	-	< 0.5	-	-
gamma-BHC (Lindane)	mg/kg dry wt	-	-	< 0.5	-	-
4,4'-DDD	mg/kg dry wt	-	-	< 0.5	-	-
4,4'-DDE	mg/kg dry wt	-	-	< 0.5	_	_
4,4'-DDT	mg/kg dry wt	-	-	< 1.0	_	
Dieldrin	mg/kg dry wt	-	-	< 0.5	_	
Endosulfan I	mg/kg dry wt	-	-	< 1.0	_	_
Endosulfan II	mg/kg dry wt	-	-	< 2	_	_
Endosulfan sulphate	mg/kg dry wt	-	_	< 1.0		
Endrin	mg/kg dry wt	-		< 0.8		
	ing/kg ury wi	-	-	< 0.0	-	-

S	ample Name:	SAH010_0.2	SAH010_1.6	SAH011_0.5	SAH011_1.0	SAH012_0.5
	-	09-May-2018 8:10 am	09-May-2018 9:00 am	09-May-2018 11:45 am	[12:00-12:15] 09-May-2018	09-May-2018 1:00 pm
	Lab Number:	1979897.1	1979897.4	1979897.6	1979897.7	1979897.10
Organochlorine Pesticides in S		s by GC-MS	I		1	1
Endrin ketone	mg/kg dry wt	-	-	< 1.0	-	-
Heptachlor	mg/kg dry wt	-	-	< 0.5	-	-
Heptachlor epoxide	mg/kg dry wt	-	-	< 0.5	-	-
Hexachlorobenzene	mg/kg dry wt	-	-	< 0.5	-	-
Polycyclic Aromatic Hydrocarbo	ons in SVOC Soil	Samples by GC-MS	6			
Acenaphthene	mg/kg dry wt	-	-	< 0.5	-	-
Acenaphthylene	mg/kg dry wt	-	-	< 0.5	-	-
Anthracene	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[a]anthracene	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[b]fluoranthene + Benzo[j fluoranthene		-	-	< 0.5	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	-	< 0.5	-	-
1&2-Chloronaphthalene	mg/kg dry wt	-	-	< 0.5	-	-
Chrysene	mg/kg dry wt	-	-	< 0.5	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	< 0.5	-	-
Fluoranthene	mg/kg dry wt	-	-	< 0.5	-	-
Fluorene	mg/kg dry wt	-	-	< 0.5	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	< 0.5	-	-
2-Methylnaphthalene	mg/kg dry wt	-	-	< 0.5	-	-
Naphthalene	mg/kg dry wt	-	-	< 0.5	-	-
Phenanthrene	mg/kg dry wt	-	-	< 0.5	-	-
Pyrene	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	-	-	< 1.3	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	-	-	< 1.3	-	-
Phenols in SVOC Soil Samples	by GC-MS					
4-Chloro-3-methylphenol	mg/kg dry wt	-	-	< 5	-	-
2-Chlorophenol	mg/kg dry wt	-	-	< 1.0	-	-
2,4-Dichlorophenol	mg/kg dry wt	-	-	< 1.0	-	-
2,4-Dimethylphenol	mg/kg dry wt	-	-	< 3	-	-
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	-	-	< 3	-	-
2-Methylphenol (o-Cresol)	mg/kg dry wt	-	-	< 1.0	-	-
2-Nitrophenol	mg/kg dry wt	-	-	< 5	-	-
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	< 30	-	-
Phenol	mg/kg dry wt	-	-	< 1.0	-	-
2,4,5-Trichlorophenol	mg/kg dry wt	-	-	< 1.0	-	-
2,4,6-Trichlorophenol	mg/kg dry wt	-	-	< 1.0	-	-
Plasticisers in SVOC Soil Sam	ples by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	-	-	< 5	-	-
Butylbenzylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Di(2-ethylhexyl)adipate	mg/kg dry wt	-	-	< 1.0	-	-
Diethylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Dimethylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Di-n-butylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Di-n-octylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Other Halogenated compounds	in SVOC Soil Sa	mples by GC-MS				
1,2-Dichlorobenzene	mg/kg dry wt	-	-	< 0.8	-	-
1,3-Dichlorobenzene	mg/kg dry wt	-	-	< 0.8	-	-
1,4-Dichlorobenzene	mg/kg dry wt	-	-	< 0.8	-	-
Hexachlorobutadiene	mg/kg dry wt	-	-	< 0.8	-	-
Hexachloroethane	mg/kg dry wt	-	-	< 0.8	-	-

Sample Type: Soil						
	Sample Name:	, ,	SAH010_1.6 09-May-2018 9:00	SAH011_0.5 09-May-2018 11:45 am	SAH011_1.0 [12:00-12:15]	SAH012_0.5 09-May-2018 1:00
	Lab Number:	am 1979897.1	am 1979897.4	1979897.6	09-May-2018 1979897.7	pm 1979897.10
Other Halogenated compound			1010001.4	10/0007.0	101000111	1010001.10
1,2,4-Trichlorobenzene	mg/kg dry wt			< 0.5	_	-
	00,	-	-	< 0.5	-	-
Other compounds in SVOC S	Soil Samples by GC	-MS				
Benzyl alcohol	mg/kg dry wt	-	-	< 10	-	-
Carbazole	mg/kg dry wt	-	-	< 0.5	-	-
Dibenzofuran	mg/kg dry wt	-	-	< 0.5	-	-
Isophorone	mg/kg dry wt	-	-	< 0.5	-	-
	Sample Name:	SAH012_1.0 09-May-2018 1:20 pm				
	Lab Number:	1979897.11				
Heavy Metals, Screen Level					I	
Total Recoverable Arsenic	mg/kg dry wt	3	-	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	-	-	-
Total Recoverable Chromium	mg/kg dry wt	40	-	-	-	-
Total Recoverable Copper	mg/kg dry wt	18	-	-	-	-
Total Recoverable Lead	mg/kg dry wt	12.8	-	-	-	-
Total Recoverable Nickel	mg/kg dry wt	22	-	-	-	-
Total Recoverable Zinc	mg/kg dry wt	40		-	-	-

Analyst's Comments

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Sample No
Individual Tests		•	
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1, 6
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1, 4, 6-7, 10-11
New Zealand Guidelines Semi Quantitative Asbestos in Soil*		-	6, 10
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082). Tested on as recieved sample	0.010 - 0.06 mg/kg dry wt	1
Semivolatile Organic Compounds Screening in Soil by GC-MS	Sonication extraction, GC-MS FS analysis. Tested on as received sample	0.002 - 30 mg/kg dry wt	6
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil		1
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	6, 10
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	6, 10
Ashed Weight	Sample ashed at 400°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	6, 10
Moisture	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	1 %	6, 10
Sample Fraction >10mm	Sample ashed at 400°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	6, 10
Sample Fraction <10mm and >2mm	Sample ashed at 400°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	6, 10

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Sample Fraction <2mm	Sample ashed at 400°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	6, 10
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	6, 10
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	6, 10
Weight of Asbestos in ACM (Non- Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	6, 10
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	6, 10
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	6, 10
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	6, 10
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	6, 10
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	6, 10
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	6, 10

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Carole Rode - Canole

Carole Rodgers-Carroll BA, NZCS Client Services Manager - Environmental

Client Name	A WORLD LEADER A WORLD LEADER		SERVICES	1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand 3118798973	ma
Addres				Office use only Job No:	
AUCKL	AND 1140			CAPAINOF CUSIODY RECORD)
Phone	09 967 9200	Fax 09 960 92	201	Sent to	
Client F	Reference 20563280	/ \$ 7 5	· <u> </u>	Hill Laboratories	<u>، بن</u>
Quote I	No Oi	rder Number		Please tick if you Signature: M. N. N.	
Prima	ary Contact Nacon Ma	15+ 30 A		Received at Date & Time:	
	nitted By			Hill Laboratories	
Charg		Zealand Limited	<u> </u>	Signature:	
Resu	Its To 🛛 Mail Client	t 🔲 Mail Subr	nitter	Condition Temp:	
□ F	ax Results Nrephalameter	on for any	m. Com	Room Temp Chilled Frozen 5, C	1
ΞE		it make Dae		Sample Analysis details checked Signature:	
	ADDERIONAE IN	RENEWARD		Priority	
				Low In Instant Asamples, please contact the lab fi Urgent (ASAP, extra charge applies, please contact the lab fi	ìrst)
	•. •			Low (ASAP, extra charge applies, please contact the lab fi	ìrst)
			:		ìrst)
	ele Types			Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete:	
Samp Waters		G Geothermal L Leachate	· —	Urgent (ASAP, extra charge applies, please contact the lab fi	VS)
Waters	GW Ground Water SW Surface Water			Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW	VS)
	E Effluent GW Ground Water SW Surface Water	L Leachate		Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (other)	VS)
Waters	E Effluent GW Ground Water SW Surface Water TW Trade Waste	L Leachate S Sallne SE Sediment M Miscellaneous	SL FS	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (other) Check Monitoring Pool Swimming/Spa Pool	VS)
Waters Solids Other	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soil	L Leachate S Sallne SE Sediment	 	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete:	VS)
Waters Solids Other	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit	L Leachate S Sallne SE Sediment M Miscellaneous Sample	Sample	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (cother) Check Monitoring Pool Sludge PL Plant FS Fish/shellfish/blota BM	VS)
Waters Solids Other No.	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit	L Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (LAS/EU) Pot2 Potable Water (LAS/EU) Pot3 Pot3 Potable Water (NZDW) Audit Monitoring Pot3 Pot6 Swimming/Spa Pool Sludge PL FS Fish/shellfish/biota BM BM Biological Material Tests Required	VS)
Waters Solids Other No. 1	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit Sample Name SAHOO SAHOO SAHOO	L Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (LAS/EU) Pot3 Potable Water (LAS/EU) Pot3 Potable Water (LAS/EU) Pot3 Pot3 Potable Water (NZDW Audit Monitoring Pot3 Pool Swimming/Spa Pool Sludge PL FS Fish/shellfish/blota BM BM Biological Material Tests Required Mathal S, CEP	VS)
Waters Solids Other No. 1	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit Sample Name COOOL	L Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (other) Check Monitoring Pool Swimming/Spa Pool Sludge PL Plant FS Fish/shellfish/biota BM BM Biological Material Matals OC P Hould COULD COULD	VS)
Waters Solids Other No. 1 2 3	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit Sample Name SAHOO SAHOO SAHOO	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time 9 / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Audit Monitoring Pot3 Pot3 Pot3 Pot4 Pot3 Pot3 Pot4 Pot4 Pot5 Pot3 Pot3 Pot4 Pot3 Pot4 Pot3 Pot4 Pot4 Pot5 Pot6 Swimming/Spa Pool Sludge PL Plant FS Fish/shellfish/biota BM BM BM BM BM BM Poub Poub	VS)
Waters Solids Other No. 1 2 3 4	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit Sample Name SAHOO SAHOO SAHOO	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time 9 / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Audit Monitoring Pot3 Pot3 Pot3 Pot4 Pot3 Pot3 Pot4 Pot4 Pot5 Pot3 Pot3 Pot4 Pot3 Pot4 Pot3 Pot4 Pot4 Pot5 Pot6 Swimming/Spa Pool Sludge PL Plant FS Fish/shellfish/biota BM BM BM BM BM BM Poub Poub	VS)
Waters Solids Other No. 1 2 3 4 5	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Sample Name SAHOIO SAHOIO J.O SAHOIO J.O	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time 9 / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Audit Monitoring Pot3 Potable Water (LAS/EU) Pot2 Potable Water (LAS/EU) Pot2 Pot3 Potable Water (NZDM Audit Monitoring Pot3 Pot0 Swimming/Spa Pool Sludge PL FS Fish/shellfish/biota BM BM Biological Material Tests Required Matals OC P Houb Coub Material	VS)
Waters Solids Other No. 1 2 3 4 5 6	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Sample Name G SAHOO G SAHOO G SAHOO G SAHOO G SAHOO G SAHOO G	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time 9 / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (other) Check Monitoring Pool Swimming/Spa Pool Sludge PL Plant FS Fish/shellfish/biota BM BM Biological Material Matal S, OC P	VS)
Waters Solids Other No. 1 2 3 4 5 6 7	EEffluent GWGWGround WaterSWSurface WaterTWTrade WasteESSoitOOSample NameSAHOIOOSAHOIOOSAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOI	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time 9 / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Audit Monitoring Pot3 Pot4 Pot3 Pot3 Pot3 Pot4 Pot3 Pot3 Pot4 Pot3 Pot4 Pot3 Pot4 Pot3 Pot3 Pot4 Pot3 Pot4 Pot3 Pot4 Pot4 Pot4 Pot3 Pot4 Pot4 Pot4 Pot5 Pot6 Pot7 Pot7 Pot7 Pot7	VS)

KB Item: 23775 Version: 1

i.

Appendix No.1 - Chain of Custody - Page 2 of 2

No.	Sample Name	Sample Date & Time	Sample Type	Tests Required
11	SAHOIZ _ O.U			dort (ort)
12	SANDIZ _ O.U SANGIZ _ O.R			Michaels, Askastos (NCA) Michaels HOLD (CCLD)
13	•			MERCAN
14	SANOZ 20			HOLD COLD
15				
16				
17				
18				
19				
20			-	
21				
22			·	· · · · · · · · · · · · · · · · · · ·
23				
24				· · · · · · · · · · · · · · · · · · ·
25	···			· · · · · · · · · · · · · · · · · · ·
26				
27				
28				
29				· · · · · · · · · · · · · · · · · · ·
30				· · · · · · · · · · · · · · · · · · ·
31				
32				
33	• ;		· · · ·	
34	· · · · · · · · · · · · · · · · · · ·			
35				
36				, , , , , , , , , , , , , , , , , , ,
37	<u> </u>			
38				
39			10 - 15 1	

KB Item: 23775 Version: 1

4

• * * * *

- · ·

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22)

- Т +64 7 858 2000
- E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 5

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	1979897	SPv2
Contact:	N Macorison	Date Received:	11-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	02-May-2019	(Amended)
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.7.5	
	Auckland 1140	Client Reference:	60563280/3.7.5	
		Submitted By:	Max Nightingale	

Sample Type: Soil

Sample Type: Soil						
San	ple Name:	DH104_0.2 09-May-2018 8:10 am	DH104_1.6 09-May-2018 9:00 am	DH103_0.5 09-May-2018 11:45 am	DH103_1.0 [12:00-12:15] 09-May-2018	DH107_0.5 09-May-2018 1:00 pm
La	b Number:	1979897.1	1979897.4	1979897.6	1979897.7	1979897.10
Individual Tests						
Dry Matter g	/100g as rcvd	72	-	76	-	-
Heavy Metals, Screen Level			· · · ·			
Total Recoverable Arsenic	mg/kg dry wt	2	3	2	3	< 2
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	0.24
Total Recoverable Chromium	mg/kg dry wt	16	26	23	22	41
Total Recoverable Copper	mg/kg dry wt	7	12	11	9	14
Total Recoverable Lead	mg/kg dry wt	8.3	9.6	6.8	6.8	20
Total Recoverable Nickel	mg/kg dry wt	8	12	10	9	34
Total Recoverable Zinc	mg/kg dry wt	16	35	27	22	53
New Zealand Guidelines Semi Qua	antitative Asbe	stos in Soil				
As Received Weight	g	-	-	814.8	-	827.0
Dry Weight	g	-	-	605.2	-	538.2
Ashed Weight	g	-	-	592.2	-	512.4
Moisture	%	-	-	26	-	35
Dry Sample Fraction >10mm	g ashed wt	-	-	< 0.1	-	75.0
Sample Fraction <10mm to >2mm	g ashed wt	-	-	348.3	-	227.9
Sample Fraction <2mm	g ashed wt	-	-	242.2	-	207.5
<2mm Subsample Weight	g ashed wt	-	-	55.2	-	53.4
Asbestos Presence / Absence		-	-	Asbestos NOT detected.	-	Asbestos NOT detected.
Description of Asbestos Form		-	-	-	-	-
Weight of Asbestos in ACM (Non- Friable)	g ashed wt	-	-	< 0.00001	-	< 0.00001
Asbestos in ACM as % of Total Sample*	% w/w	-	-	< 0.001	-	< 0.001
Weight of Asbestos as Fibrous Asbestos (Friable)	g ashed wt	-	-	< 0.00001	-	< 0.00001
Asbestos as Fibrous Asbestos as Total Sample*	% of % w/w	-	-	< 0.001	-	< 0.001
Weight of Asbestos as Asbestos Fines (Friable)*	g ashed wt	-	-	< 0.00001	-	< 0.00001
Asbestos as Asbestos Fines as % Total Sample*	of % w/w	-	-	< 0.001	-	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sam	% w/w ple*	-	-	< 0.001	-	< 0.001

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sample Type: Soil	Osmula Nama					
	Sample Name:	DH104_0.2 09-May-2018 8:10 am	DH104_1.6 09-May-2018 9:00 am	DH103_0.5 09-May-2018 11:45 am	DH103_1.0 [12:00-12:15] 09-May-2018	DH107_0.5 09-May-2018 1:00 pm
	Lab Number:	1979897.1	1979897.4	1979897.6	1979897.7	1979897.10
Organochlorine Pesticides S						
Aldrin	mg/kg dry wt	< 0.014	-	-	_	-
alpha-BHC	mg/kg dry wt	< 0.014	-	-	_	-
beta-BHC	mg/kg dry wt	< 0.014	_	_	_	
delta-BHC	mg/kg dry wt	< 0.014	_	-	_	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	_		_	-
cis-Chlordane	mg/kg dry wt	< 0.014	_	-	_	
trans-Chlordane	mg/kg dry wt	< 0.014	-	-	_	-
Total Chlordane [(cis+trans)*		< 0.04	-	-		
100/42]						
2,4'-DDD	mg/kg dry wt	< 0.014	-	-	-	-
4,4'-DDD	mg/kg dry wt	< 0.014	-	-	-	-
2,4'-DDE	mg/kg dry wt	< 0.014	-	-	-	-
4,4'-DDE	mg/kg dry wt	< 0.014	-	-	-	-
2,4'-DDT	mg/kg dry wt	< 0.014	-	-	-	-
4,4'-DDT	mg/kg dry wt	< 0.014	-	-	-	-
Total DDT Isomers	mg/kg dry wt	< 0.09	-	-	-	-
Dieldrin	mg/kg dry wt	< 0.014	-	-	-	-
Endosulfan I	mg/kg dry wt	< 0.014	-	-	-	-
Endosulfan II	mg/kg dry wt	< 0.014	-	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.014	-	-	-	-
Endrin	mg/kg dry wt	< 0.014	-	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.014	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.014	-	-	-	-
Heptachlor	mg/kg dry wt	< 0.014	-	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.014	-	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.014	-	-	-	-
Methoxychlor	mg/kg dry wt	< 0.014	-	-	-	-
Haloethers in SVOC Soil Sa		1			1	í.
Bis(2-chloroethoxy) methane		-	-	< 0.5	-	-
Bis(2-chloroethyl)ether	mg/kg dry wt	-	-	< 0.5	-	-
Bis(2-chloroisopropyl)ether	mg/kg dry wt	-	-	< 0.5	-	-
4-Bromophenyl phenyl ether	mg/kg dry wt	-	-	< 0.4	-	-
4-Chlorophenyl phenyl ether	mg/kg dry wt	-	-	< 0.5	-	-
Nitrogen containing compour		amples by GC-MS			ì	
2,4-Dinitrotoluene	mg/kg dry wt	-	-	< 1.0	-	-
2,6-Dinitrotoluene	mg/kg dry wt	-	-	< 1.0	-	-
Nitrobenzene	mg/kg dry wt	-	-	< 0.5	-	-
N-Nitrosodi-n-propylamine	mg/kg dry wt	-	-	< 0.8	-	-
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	-	-	< 0.8	-	-
Organochlorine Pesticides ir	NSVOC Soil Sample	s by GC-MS				
Aldrin	mg/kg dry wt	-	-	< 0.5	-	-
alpha-BHC	mg/kg dry wt	-	-	< 0.5	-	-
beta-BHC	mg/kg dry wt	-	-	< 0.5	-	-
delta-BHC	mg/kg dry wt	-	-	< 0.5	-	-
gamma-BHC (Lindane)	mg/kg dry wt	-	-	< 0.5	-	-
4,4'-DDD	mg/kg dry wt	-	-	< 0.5	-	-
4,4'-DDE	mg/kg dry wt	-	-	< 0.5	-	-
4,4'-DDT	mg/kg dry wt	-	-	< 1.0	-	-
Dieldrin	mg/kg dry wt	-	-	< 0.5	-	-
Endosulfan I	mg/kg dry wt	-	-	< 1.0	-	-
Endosulfan II	mg/kg dry wt	-	-	< 2	-	-
Endosulfan sulphate	mg/kg dry wt	-	-	< 1.0	-	-
Endrin	mg/kg dry wt	-	-	< 0.8	-	-

S	ample Name:	DH104_0.2	DH104_1.6	DH103_0.5	DH103_1.0	DH107_0.5
		09-May-2018 8:10 am	09-May-2018 9:00 am	09-May-2018 11:45 am	[12:00-12:15] 09-May-2018	09-May-2018 1:00 pm
	Lab Number:	1979897.1	1979897.4	1979897.6	1979897.7	1979897.10
Organochlorine Pesticides in S		s by GC-MS	I		1	1
Endrin ketone	mg/kg dry wt	-	-	< 1.0	-	-
Heptachlor	mg/kg dry wt	-	-	< 0.5	-	-
Heptachlor epoxide	mg/kg dry wt	-	-	< 0.5	-	-
Hexachlorobenzene	mg/kg dry wt	-	-	< 0.5	-	-
Polycyclic Aromatic Hydrocarbo	ns in SVOC Soil	Samples by GC-MS	6			
Acenaphthene	mg/kg dry wt	-	-	< 0.5	-	-
Acenaphthylene	mg/kg dry wt	-	-	< 0.5	-	-
Anthracene	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[a]anthracene	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene		-	-	< 0.5	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	-	< 0.5	-	-
1&2-Chloronaphthalene	mg/kg dry wt	-	-	< 0.5	-	-
Chrysene	mg/kg dry wt	-	-	< 0.5	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	< 0.5	-	-
Fluoranthene	mg/kg dry wt	-	-	< 0.5	-	-
Fluorene	mg/kg dry wt	-	-	< 0.5	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	< 0.5	-	-
2-Methylnaphthalene	mg/kg dry wt	-	-	< 0.5	-	-
Naphthalene	mg/kg dry wt	-	-	< 0.5	-	-
Phenanthrene	mg/kg dry wt	-	-	< 0.5	-	-
Pyrene	mg/kg dry wt	-	-	< 0.5	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	-	-	< 1.3	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	-	-	< 1.3	-	-
Phenols in SVOC Soil Samples	by GC-MS					
4-Chloro-3-methylphenol	mg/kg dry wt	-	-	< 5	-	-
2-Chlorophenol	mg/kg dry wt	-	-	< 1.0	-	-
2,4-Dichlorophenol	mg/kg dry wt	-	-	< 1.0	-	-
2,4-Dimethylphenol	mg/kg dry wt	-	-	< 3	-	-
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	-	-	< 3	-	-
2-Methylphenol (o-Cresol)	mg/kg dry wt	-	-	< 1.0	-	-
2-Nitrophenol	mg/kg dry wt	-	-	< 5	-	-
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	< 30	-	-
Phenol	mg/kg dry wt	-	-	< 1.0	-	-
2,4,5-Trichlorophenol	mg/kg dry wt	-	-	< 1.0	-	-
2,4,6-Trichlorophenol	mg/kg dry wt	-	-	< 1.0	-	-
Plasticisers in SVOC Soil Samp	bles by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	-	-	< 5	-	-
Butylbenzylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Di(2-ethylhexyl)adipate	mg/kg dry wt	-	-	< 1.0	-	-
Diethylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Dimethylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Di-n-butylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Di-n-octylphthalate	mg/kg dry wt	-	-	< 1.0	-	-
Other Halogenated compounds	in SVOC Soil Sa	mples by GC-MS				
1,2-Dichlorobenzene	mg/kg dry wt	-	-	< 0.8	-	-
1,3-Dichlorobenzene	mg/kg dry wt	-	-	< 0.8	-	-
1,4-Dichlorobenzene	mg/kg dry wt	-	-	< 0.8	-	-
Hexachlorobutadiene	mg/kg dry wt	-	-	< 0.8	-	-
Hexachloroethane	mg/kg dry wt	-	-	< 0.8	-	-

Sample Type: Soil								
	Sample Name:		DH104_1.6 09-May-2018 9:00	DH103_0.5 09-May-2018	DH103_1.0 [12:00-12:15]	DH107_0.5 09-May-2018 1:00		
	1 -1 N1 1	am 1979897.1	am 1979897.4	11:45 am 1979897.6	09-May-2018 1979897.7	pm 1979897.10		
	Lab Number:		1979897.4	1979897.0	1979897.7	1979697.10		
Other Halogenated compounds in SVOC Soil Samples by GC-MS								
1,2,4-Trichlorobenzene	mg/kg dry wt	-	-	< 0.5	-	-		
Other compounds in SVOC S	Soil Samples by GC	-MS						
Benzyl alcohol	mg/kg dry wt	-	-	< 10	-	-		
Carbazole	mg/kg dry wt	-	-	< 0.5	-	-		
Dibenzofuran	mg/kg dry wt	-	-	< 0.5	-	-		
Isophorone	mg/kg dry wt	-	-	< 0.5	-	-		
	Sample Name:	DH107_1.0 09-May-2018 1:20 pm						
	Lab Number:	1979897.11						
Heavy Metals, Screen Level			· · · · · ·		I			
Total Recoverable Arsenic	mg/kg dry wt	3	-	-	-	-		
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	-	-	-		
Total Recoverable Chromium	mg/kg dry wt	40	-	-	-	-		
Total Recoverable Copper	mg/kg dry wt	18	-	-	-	-		
Total Recoverable Lead	mg/kg dry wt	12.8	-	-	-	-		
Total Recoverable Nickel	mg/kg dry wt	22	-	-	-	-		
Total Recoverable Zinc	mg/kg dry wt	40	-	-	-	-		

Analyst's Comments

Amended Report: This certificate of analysis replaces an earlier report issued on 22 May 2018 at 3:17 pm Reason for amendment: Sample IDs amended as requested.

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Test	Method Description	Default Detection Limit	Sample No
Individual Tests	· ·		
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1, 6
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1, 4, 6-7, 10-11
New Zealand Guidelines Semi Quantitative Asbestos in Soil*		-	6, 10
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082). Tested on as recieved sample	0.010 - 0.06 mg/kg dry wt	1
Semivolatile Organic Compounds Screening in Soil by GC-MS	Sonication extraction, GC-MS FS analysis. Tested on as received sample	0.002 - 30 mg/kg dry wt	6
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil	1	
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	6, 10
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	6, 10
Ashed Weight	Sample ashed at 400°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	6, 10
Moisture	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	1 %	6, 10

Test	Method Description	Default Detection Limit	Sample No
Sample Fraction >10mm	Sample ashed at 400°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	6, 10
Sample Fraction <10mm and >2mm	Sample ashed at 400°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	6, 10
Sample Fraction <2mm	Sample ashed at 400°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	6, 10
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	6, 10
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	6, 10
Weight of Asbestos in ACM (Non- Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	6, 10
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	6, 10
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	6, 10
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	6, 10
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	6, 10
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	6, 10
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	6, 10

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

unins

Kim Harrison MSc Client Services Manager - Environmental

Client Name	A WORLD LEADER A WORLD LEADER		SERVICES	1 Clyde Street Received by: Sachet Shar Private Bag 3205 Hamilton 3240, New Zealand 3118798973	ma
Addres				Office use only Job No:	
AUCKL	AND 1140			CAPAINOF CUSIODY RECORD)
Phone	09 967 9200	Fax 09 960 92	201	Sent to	
Client F	Reference 20563280	/ \$ 7 5	· <u> </u>	Hill Laboratories	<u>، بن</u>
Quote I	No Oi	rder Number		Please tick if you Signature: M. N. N.	
Prima	ary Contact Nacon Ma	KER SOA		Received at Date & Time:	
	nitted By			Hill Laboratories	
Charg		Zealand Limited	<u> </u>	Signature:	
Resu	Its To 🛛 Mail Client	t 🔲 Mail Subr	nitter	Condition Temp:	
□ F	ax Results Nrephalameter	on for any	m. Com	Room Temp Chilled Frozen 5, C	1
ΞE		it make Dae		Sample Analysis details checked Signature:	
	ADDERIONAE IN	RENEWARD		Priority	
				Low In Instant Asamples, please contact the lab fi Urgent (ASAP, extra charge applies, please contact the lab fi	ìrst)
	•. •			Low (/ Normal L High Urgent (ASAP, extra charge applies, please contact the lab fi	ìrst)
			:		ìrst)
	ele Types			Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete:	
Samp Waters		G Geothermal L Leachate	· —	Urgent (ASAP, extra charge applies, please contact the lab fi	VS)
Waters	GW Ground Water SW Surface Water			Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW	VS)
	E Effluent GW Ground Water SW Surface Water	L Leachate		Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (other)	VS)
Waters	E Effluent GW Ground Water SW Surface Water TW Trade Waste	L Leachate S Sallne SE Sediment M Miscellaneous	SL FS	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (other) Check Monitoring Pool Swimming/Spa Pool	VS)
Waters Solids Other	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soil	L Leachate S Sallne SE Sediment	 	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete:	VS)
Waters Solids Other	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit	L Leachate S Sallne SE Sediment M Miscellaneous Sample	Sample	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (cother) Check Monitoring Pool Sludge PL Plant FS Fish/shellfish/blota BM	VS)
Waters Solids Other No.	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit	L Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (LAS/EU) Pot2 Potable Water (LAS/EU) Pot3 Pot3 Potable Water (NZDW) Audit Monitoring Pot3 Pot6 Swimming/Spa Pool Sludge PL FS Fish/shellfish/biota BM BM Biological Material Tests Required	VS)
Waters Solids Other No. 1	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit Sample Name SAHOO SAHOO SAHOO	L Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (LAS/EU) Pot3 Potable Water (LAS/EU) Pot3 Potable Water (LAS/EU) Pot3 Pot3 Potable Water (NZDW Audit Monitoring Pot3 Pool Swimming/Spa Pool Sludge PL FS Fish/shellfish/blota BM BM Biological Material Tests Required Mathal S, CEP	VS)
Waters Solids Other No. 1	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit Sample Name COOOL	L Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (other) Check Monitoring Pool Swimming/Spa Pool Sludge PL Plant FS Fish/shellfish/biota BM BM Biological Material Matals OC P Hould COULD COULD	VS)
Waters Solids Other No. 1 2 3	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit Sample Name SAHOO SAHOO SAHOO	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time Q / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Audit Monitoring Pot3 Pot3 Pot3 Pot4 Pot3 Pot3 Pot3 Pot4 Pot4 Pot5 Pot3 Pot4 Pot3 Pot4 Pot4 Pot5 Pot6 Swimming/Spa Pool Sludge PL Plant FS Fish/shellfish/biota BM BM BM BM BM BM Poub Poub	VS)
Waters Solids Other No. 1 2 3 4	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Oit Sample Name SAHOO SAHOO SAHOO	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time Q / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Audit Monitoring Pot3 Pot3 Pot3 Pot4 Pot3 Pot3 Pot3 Pot4 Pot4 Pot5 Pot3 Pot4 Pot3 Pot4 Pot4 Pot5 Pot6 Swimming/Spa Pool Sludge PL Plant FS Fish/shellfish/biota BM BM BM BM BM BM Poub Poub	VS)
Waters Solids Other No. 1 2 3 4 5	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Sample Name SAHOIO SAHOIO J.O SAHOIO J.O	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time Q / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Audit Monitoring Pot3 Potable Water (LAS/EU) Pot2 Potable Water (LAS/EU) Pot2 Pot3 Potable Water (NZDM Audit Monitoring Pot3 Pot0 Swimming/Spa Pool Sludge PL FS Fish/shellfish/biota BM BM Biological Material Tests Required Matals OC P Houb Coub Material	VS)
Waters Solids Other No. 1 2 3 4 5 6	E Effluent GW Ground Water SW Surface Water TW Trade Waste ES Soit O O Sample Name G SAHOO G SAHOO G SAHOO G SAHOO G SAHOO G SAHOO G	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time Q / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Pot2 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (NZDW Audit Monitoring Pot3 Potable Water (other) Check Monitoring Pool Swimming/Spa Pool Sludge PL Plant FS Fish/shellfish/biota BM BM Biological Material Matal S, OC P	VS)
Waters Solids Other No. 1 2 3 4 5 6 7	EEffluent GWGWGround WaterSWSurface WaterTWTrade WasteESSoitOOSample NameSAHOIOOSAHOIOOSAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOISAHOIOI	Leachate S Sallne SE Sediment M Miscellaneous Sample Date & Time Q / 5 / 1 9	SL F3 Sample Type	Urgent (ASAP, extra charge applies, please contact the lab fi Requested Reporting Dete: Potable Water (LAS/EU) Audit Monitoring Pot3 Pot4 Pot3 Pot3 Pot3 Pot4 Pot3 Pot3 Pot4 Pot3 Pot3 Pot4 Pot4 Pot3 Pot3 Pot4 Pot3 Pot4 Pot3 Pot4 Pot4 Pot3 Pot4 Pot4 Pot4 Pot5 Pot4 Pot5 Pot6 Pot7 Pot7 Pot7	VS)

KB Item: 23775 Version: 1

i.

Appendix No.1 - Chain of Custody - Page 2 of 2

No.	Sample Name	Sample Date & Time	Sample Type	Tests Required
11	SAHOIZ _ O.U			dort (ort)
12	SANDIZ _ O.U SANGIZ _ O.R			Michaels, Askastos (NCA) Michaels HOLD (CCLD)
13	•			MERCAN
14	SANOZ 20			HOLD COLD
15				
16				
17				
18				
19				
20			_	
21				
22			·	· · · · · · · · · · · · · · · · · · ·
23				
24				· · · · · · · · · · · · · · · · · · ·
25	···			· · · · · · · · · · · · · · · · · · ·
26				
27				
28				
29				· · · · · · · · · · · · · · · · · · ·
30				· · · · · · · · · · · · · · · · · · ·
31				
32				
33	• ;		· · · ·	
34	· · · · · · · · · · · · · · · · · · ·			
35				
36				, , , , , , , , , , , , , , , , , , ,
37	<u> </u>			
38				
39			10 - 15 1	

KB Item: 23775 Version: 1

4

• * * * *

- · ·

Page 1 of 3

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	1981512	SPv1
Contact:	N Macorison	Date Received:	14-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	22-May-2018	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.7.5	
	Auckland 1140	Client Reference:	60563280/3.75	
		Submitted By:	Max Nightingale	

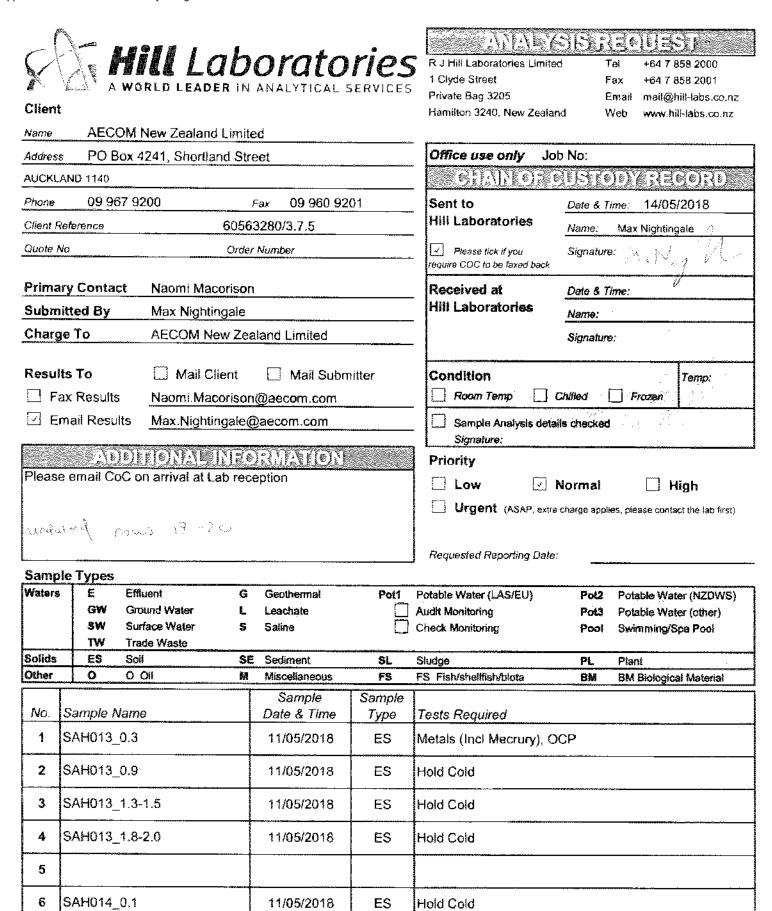
Sample Type: Soil						
	Sample Name:	SAH013_0.3	SAH014_0.5	SAH015_0.1	SAH015_0.5	SAH016_0.5
		11-May-2018 7:55 am	11-May-2018 9:50 am	11-May-2018 10:45 am	11-May-2018 10:45 am	11-May-2018 11:45 am
	Lab Number:	1981512.1	1981512.6	1981512.8	1981512.9	1981512.13
Individual Tests	Lub Number.					
Dry Matter	g/100g as rcvd	77	80	-	-	_
Heavy Metals, Screen Level	g/ 100g do 101d		00			
Total Recoverable Arsenic	mg/kg dry wt	_	4	3	4	4
Total Recoverable Cadmium	mg/kg dry wt		4 < 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium		-	32	30	36	36
Total Recoverable Copper	mg/kg dry wt		19	19	10	12
Total Recoverable Lead		-	12.9	103	12.8	10.4
	mg/kg dry wt	-			12.0	10.4
Total Recoverable Nickel	mg/kg dry wt		31	33		
Total Recoverable Zinc	mg/kg dry wt	-	47	61	32	32
Heavy Metals with Mercury, S					1	1
Total Recoverable Arsenic	mg/kg dry wt	4	-	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.15	-	-	-	-
Total Recoverable Chromium	mg/kg dry wt	28	-	-	-	-
Total Recoverable Copper	mg/kg dry wt	11	-	-	-	-
Total Recoverable Lead	mg/kg dry wt	15.6	-	-	-	-
Total Recoverable Mercury	mg/kg dry wt	< 0.10	-	-	-	-
Total Recoverable Nickel	mg/kg dry wt	16	-	-	-	-
Total Recoverable Zinc	mg/kg dry wt	42	-	-	-	-
Organochlorine Pesticides S	creening in Soil					
Aldrin	mg/kg dry wt	< 0.013	-	-	-	-
alpha-BHC	mg/kg dry wt	< 0.013	-	-	-	-
beta-BHC	mg/kg dry wt	< 0.013	-	-	-	-
delta-BHC	mg/kg dry wt	< 0.013	-	-	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	-	-	-	-
cis-Chlordane	mg/kg dry wt	< 0.013	-	-	-	-
trans-Chlordane	mg/kg dry wt	< 0.013	-	-	-	-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	-	-	-	-
2,4'-DDD	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDD	mg/kg dry wt	< 0.013	-	-	-	-
2,4'-DDE	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDE	mg/kg dry wt	< 0.013	-	-	-	-
2,4'-DDT	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDT	mg/kg dry wt	< 0.013	-	-	-	-
Total DDT Isomers	mg/kg dry wt	< 0.08	-	-	-	-
Dieldrin	mg/kg dry wt	< 0.013	-	-	-	-
Endosulfan I	mg/kg dry wt	< 0.013	-	-	-	-
1		L				

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Sample Type: Soil						
	Sample Name:	SAH013_0.3 11-May-2018 7:55 am	SAH014_0.5 11-May-2018 9:50 am	SAH015_0.1 11-May-2018 10:45 am	SAH015_0.5 11-May-2018 10:45 am	SAH016_0.5 11-May-2018 11:45 am
	Lab Number:	1981512.1	1981512.6	1981512.8	1981512.9	1981512.13
Organochlorine Pesticides Screening in Soil						
Endosulfan II	mg/kg dry wt	< 0.013	-	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.013	-	-	-	-
Endrin	mg/kg dry wt	< 0.013	-	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.013	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.013	-	-	-	-
Heptachlor	mg/kg dry wt	< 0.013	-	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.013	-	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.013	-	-	-	-
Methoxychlor	mg/kg dry wt	< 0.013	-	-	-	-
Polycyclic Aromatic Hydrocarl	bons Screening in S	Soil				
1-Methylnaphthalene	mg/kg dry wt	-	0.042	-	-	-
2-Methylnaphthalene	mg/kg dry wt	-	0.031	-	-	-
Perylene	mg/kg dry wt		1.45	-	_	
Benzo[a]pyrene Potency Equivalency Factor (PEF) NE	mg/kg dry wt	-	7.8	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	-	7.7	-	-	-
Acenaphthylene	mg/kg dry wt	-	0.137	-	-	-
Acenaphthene	mg/kg dry wt	-	0.37	-	-	-
Anthracene	mg/kg dry wt	-	1.97	-	-	-
Benzo[a]anthracene	mg/kg dry wt	-	5.8	-	_	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	5.0	-	_	-
Benzo[b]fluoranthene + Benzo fluoranthene		-	6.9	-	-	-
Benzo[e]pyrene	mg/kg dry wt	-	3.3	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	3.4	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	2.6	-	-	-
Chrysene	mg/kg dry wt	-	4.4	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	0.67	-	-	-
Fluoranthene	mg/kg dry wt	-	11.7	-	-	-
Fluorene	mg/kg dry wt	-	0.26	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	4.0	-	-	-
Naphthalene	mg/kg dry wt	-	< 0.07	-	-	-
Phenanthrene	mg/kg dry wt	-	5.7	-	-	-
Pyrene	mg/kg dry wt	-	8.5	-	-	-
	Sample Name:	SAH016_1.1 11-May-2018				
	Lab Number:	11:55 am 1981512.14				
Heavy Metals, Screen Level		1001012.14	1		1	1
Total Recoverable Arsenic	mg/kg dry wt	< 2	-	-	_	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	-	-	
Total Recoverable Chromium	mg/kg dry wt	8	-	-	-	
Total Recoverable Copper	mg/kg dry wt	3	-	-	_	-
Total Recoverable Lead	mg/kg dry wt	5.3	-	-	-	-
Total Recoverable Nickel	mg/kg dry wt	6	-	-	-	-
Total Recoverable Zinc				-	-	-
	mg/kg dry wt	5	-	-	-	-
Analyst's Comments						
Appendix No.1 - Chain of	r Custody					

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.


Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	6, 8-9, 13-14			
Heavy Metals with Mercury, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1			
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082). Tested on as recieved sample	0.010 - 0.06 mg/kg dry wt	1			
Polycyclic Aromatic Hydrocarbons Screening in Soil	Sonication extraction, Dilution or SPE cleanup (if required), GC- MS SIM analysis (modified US EPA 8270). Tested on as received sample. [KBIs:5786,2805,2695]	0.002 - 0.05 mg/kg dry wt	6			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1, 6			
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	BaP Potency Equivalence calculated from Benz(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1 + Chrysene x 0.01 + Dibenz(a,h)anthracene x 1 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	6			
Benzo[a]pyrene Toxic Equivalence (TEF)	BaP Toxic Equivalence calculated from Benzo(a)anthracene x 0.1 + BaP x 1 + Benzo(b)fluoranthene x 0.1 + Benzo(k) fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.1 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	6			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

Hurrison

Kim Harrison MSc Client Services Manager - Environmental

11/05/2018

11/05/2018

11/05/2018

ES

ES

ES

Metals, PAH

Hold Cold

Hold Cold

7

8

ĝ

10

SAH014 0.5

SAH014_1.5

SAH014 1.8-2.0

		Sample	Sample	
No.	Sample Name	Date & Time	Туре	Tests Required
11	SAH015_0.1	11/05/2018	ES	Metals
12	SAH015_0.5	11/05/2018	ES	Metals
13	SAH015_0.9	11/05/2018	ES	Hold Cold
14	SAH015_1.8-2.0	11/05/2018	ES	Hold Cold
15				
16	SAH016_0.1	11/05/2018	ES	Hold Cold
17	SAH016_0.5	11/05/2018	ES	Metals
18	SAH016_1.1	11/05/2018	ES	Metals
19	SAH016_2.3	11/05/2018	ES	Hold Cold
20	SAH016_3.0-3.4	11/05/2018	ES	Hold Cold
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22)

- +64 7 858 2000 Т
- E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 3

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	1981512	SPv2
Contact:	N Macorison	Date Received:	14-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	02-May-2019	(Amended)
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.7.5	
	Auckland 1140	Client Reference:	60563280/3.75	
		Submitted By:	Max Nightingale	

Sample Type: Soil

Sample Type: Soil						
	Sample Name:	AME_EHA102_0. 3 11-May-2018	5 11-May-2018	1 11-May-2018	5 11-May-2018	5 11-May-2018
	Lab Number:	7:55 am 1981512.1	9:50 am 1981512.6	10:45 am 1981512.8	10:45 am 1981512.9	11:45 am 1981512.13
Individual Tests	Lap Number.	1901312.1	1901312.0	1901312.0	1901312.9	1901312.13
	a/100a oo royd	77	80			
Dry Matter	g/100g as rcvd	77	80	-	-	-
Heavy Metals, Screen Level		1		-		
Total Recoverable Arsenic	mg/kg dry wt	-	4	3	4	4
Total Recoverable Cadmium	mg/kg dry wt	-	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	88,	-	32	30	36	36
Total Recoverable Copper	mg/kg dry wt	-	19	19	10	12
Total Recoverable Lead	mg/kg dry wt	-	12.9	103	12.8	10.4
Total Recoverable Nickel	mg/kg dry wt	-	31	33	19	17
Total Recoverable Zinc	mg/kg dry wt	-	47	61	32	32
Heavy Metals with Mercury,	Screen Level					
Total Recoverable Arsenic	mg/kg dry wt	4	-	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.15	-	-	-	-
Total Recoverable Chromium	n mg/kg dry wt	28	-	-	-	-
Total Recoverable Copper	mg/kg dry wt	11	-	-	-	-
Total Recoverable Lead	mg/kg dry wt	15.6	-	-	-	-
Total Recoverable Mercury	mg/kg dry wt	< 0.10	-	-	-	-
Total Recoverable Nickel	mg/kg dry wt	16	-	-	-	-
Total Recoverable Zinc	mg/kg dry wt	42	-	-	-	-
Organochlorine Pesticides S	creening in Soil			1	1	1
Aldrin	mg/kg dry wt	< 0.013	-	-	-	-
alpha-BHC	mg/kg dry wt	< 0.013	-	-	-	-
beta-BHC	mg/kg dry wt	< 0.013	-	-	-	-
delta-BHC	mg/kg dry wt	< 0.013	-	-	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	-	-	-	-
cis-Chlordane	mg/kg dry wt	< 0.013	-	-	-	-
trans-Chlordane	mg/kg dry wt	< 0.013	-	-	-	-
Total Chlordane [(cis+trans)* 100/42]		< 0.04	-	-	-	-
2,4'-DDD	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDD	mg/kg dry wt	< 0.013	-	-	-	-
2,4'-DDE	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDE	mg/kg dry wt	< 0.013	-	-	-	-
2,4'-DDT	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDT	mg/kg dry wt	< 0.013	-	-	-	-
Total DDT Isomers	mg/kg dry wt	< 0.08	-	-	-	-
Dieldrin	mg/kg dry wt	< 0.013	-	-	-	-
Endosulfan I	mg/kg dry wt	< 0.013	-	-	-	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

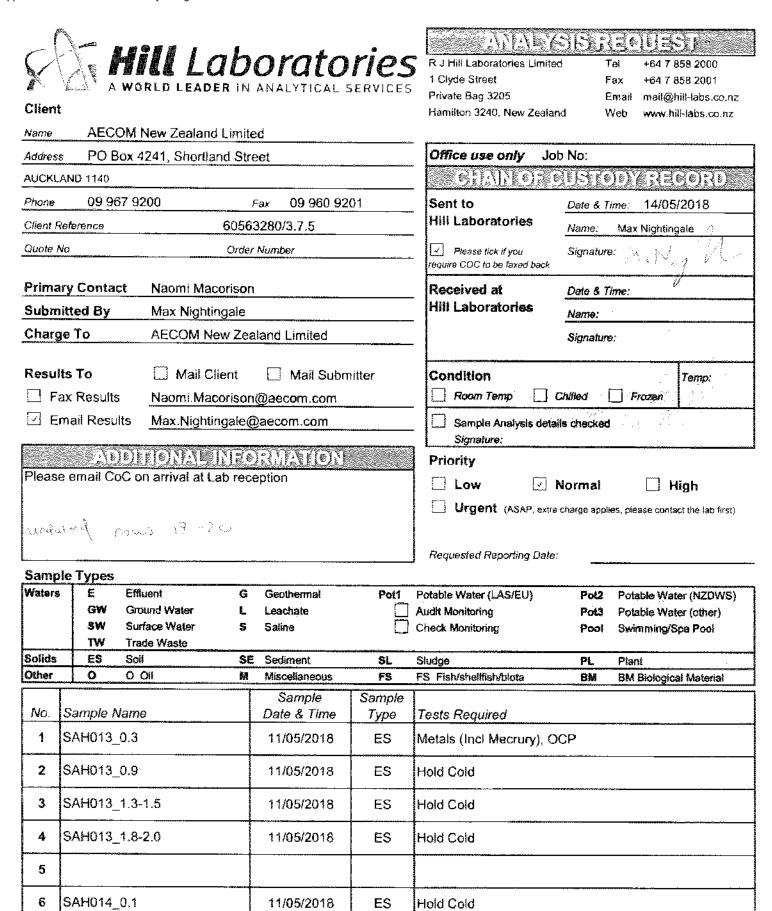
San	nple Name:	AME_EHA102_0. 3 11-May-2018	AME_EHA106_0. 5 11-May-2018	AME_EHA107_0. 1 11-May-2018	AME_EHA107_0. 5 11-May-2018	AME_EHA108_0 5 11-May-2018
		7:55 am	9:50 am	10:45 am	10:45 am	11:45 am
La	ab Number:	1981512.1	1981512.6	1981512.8	1981512.9	1981512.13
Organochlorine Pesticides Screen	ning in Soil					
Endosulfan II	mg/kg dry wt	< 0.013	-	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.013	-	-	-	-
Endrin	mg/kg dry wt	< 0.013	-	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.013	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.013	-	-	-	-
Heptachlor	mg/kg dry wt	< 0.013	-	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.013	-	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.013	-	-	-	-
Methoxychlor	mg/kg dry wt	< 0.013	-	-	-	-
Polycyclic Aromatic Hydrocarbons	Screening in S	Soil				
1-Methylnaphthalene	mg/kg dry wt	-	0.042	-	-	-
2-Methylnaphthalene	mg/kg dry wt	-	0.031	-	-	-
Perylene	mg/kg dry wt	-	1.45	-	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	-	7.8	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	-	7.7	-	-	-
Acenaphthylene	mg/kg dry wt	-	0.137	-	-	-
Acenaphthene	mg/kg dry wt	-	0.37	-	-	-
Anthracene	mg/kg dry wt	-	1.97	-	-	-
Benzo[a]anthracene	mg/kg dry wt	-	5.8	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	5.0	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	6.9	-	-	-
Benzo[e]pyrene	mg/kg dry wt	-	3.3	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	3.4	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	2.6	-	-	-
Chrysene	mg/kg dry wt	-	4.4	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	0.67	-	-	-
Fluoranthene	mg/kg dry wt	-	11.7	-	-	-
Fluorene	mg/kg dry wt	-	0.26	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	4.0	-	-	-
Naphthalene	mg/kg dry wt	-	< 0.07	-	-	-
Phenanthrene	mg/kg dry wt	-	5.7	-	-	-
Pyrene	mg/kg dry wt	-	8.5	-	-	-
Sar	nple Name:	AME_EHA108_1. 1 11-May-2018 11:55 am				
	ab Number:	1981512.14				
Heavy Metals, Screen Level		1				
Total Recoverable Arsenic	mg/kg dry wt	< 2	-	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	-	-	-
Total Recoverable Chromium	mg/kg dry wt	8	-	-	-	-
Total Recoverable Copper	mg/kg dry wt	3	-	-	-	-
Total Recoverable Lead	mg/kg dry wt	5.3	-	-	-	-
	mg/kg dry wt	6	-	-	-	-
Total Recoverable Nickel Total Recoverable Zinc	mg/kg dry wt	5				

Amended Report: This certificate of analysis replaces an earlier report issued on 22 May 2018 at 9:49 am Reason for amendment: Sample IDs amended as requested.

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.


Sample Type: Soil									
Test	Method Description	Default Detection Limit	Sample No						
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	6, 8-9, 13-14						
Heavy Metals with Mercury, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1						
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082). Tested on as recieved sample	0.010 - 0.06 mg/kg dry wt	1						
Polycyclic Aromatic Hydrocarbons Screening in Soil	Sonication extraction, Dilution or SPE cleanup (if required), GC- MS SIM analysis (modified US EPA 8270). Tested on as received sample. [KBIs:5786,2805,2695]	0.002 - 0.05 mg/kg dry wt	6						
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1, 6						
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	BaP Potency Equivalence calculated from Benz(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1 + Chrysene x 0.01 + Dibenz(a,h)anthracene x 1 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	6						
Benzo[a]pyrene Toxic Equivalence (TEF)	BaP Toxic Equivalence calculated from Benzo(a)anthracene x 0.1 + BaP x 1 + Benzo(b)fluoranthene x 0.1 + Benzo(k) fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.1 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	6						

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

uning

Kim Harrison MSc Client Services Manager - Environmental

11/05/2018

11/05/2018

11/05/2018

ES

ES

ES

Metals, PAH

Hold Cold

Hold Cold

7

8

ĝ

10

SAH014 0.5

SAH014_1.5

SAH014 1.8-2.0

		Sample	Sample	
No.	Sample Name	Date & Time	Туре	Tests Required
11	SAH015_0.1	11/05/2018	ES	Metals
12	SAH015_0.5	11/05/2018	ES	Metals
13	SAH015_0.9	11/05/2018	ES	Hold Cold
14	SAH015_1.8-2.0	11/05/2018	ES	Hold Cold
15				
16	SAH016_0.1	11/05/2018	ES	Hold Cold
17	SAH016_0.5	11/05/2018	ES	Metals
18	SAH016_1.1	11/05/2018	ES	Metals
19	SAH016_2.3	11/05/2018	ES	Hold Cold
20	SAH016_3.0-3.4	11/05/2018	ES	Hold Cold
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

Page 1 of 1

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	1984837	SPv1
Contact:	N Macorison	Date Received:	18-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	24-May-2018	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.7.5	
	Auckland 1140	Client Reference:	60563280/3.7.5	
		Submitted By:	Kate Feickert	

Sample Type: Soil									
	Sample Name:	SAH017_0.2 14-May-2018 2:30 pm							
	Lab Number:	1984837.1							
Heavy Metals, Screen Level									
Total Recoverable Arsenic	mg/kg dry wt	3	-	-	-	-			
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	-	-	-			
Total Recoverable Chromium	mg/kg dry wt	25	-	-	-	-			
Total Recoverable Copper	mg/kg dry wt	13	-	-	-	-			
Total Recoverable Lead	mg/kg dry wt	11.9	-	-	-	-			
Total Recoverable Nickel	mg/kg dry wt	22	-	-	-	-			
Total Recoverable Zinc	mg/kg dry wt	34	-	-	-	-			

Analyst's Comments

Appendix No.1 - Chain of Custody

Summarv of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Carole Rodgers-Carroll BA, NZCS Client Services Manager - Environmental

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Client	A V	VORLD LEADER	RIN A	NALYTICAL SE	TIES ERVICES	R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealan	Bessius	Date Recv: 18-May-18 11:38 8 4837 ad by: Nathaniel Sue
Name		M New Zealand 1				Office use only Job	D N 311984	8374
Address		ox 4241, Shortlan	d Stree	et		CEPANNOR C		DV REGORD
AUCKLA						Sent to	Date & Tin	
Phone	09 967	7 9200	Fa		<u> </u>	Hill Laboratories	Name:	
Client Re	ference		605 <u>63</u> 2	280/3.7.5			Signature:	
Quote No	<u> </u>		Order N	lumber		Please tick if you require COC to be faxed back	olgnature.	
	y Contac tted By	Kate Feicke	rt			Received at Hill Laboratories	Date & Tir Name: Signature.	
Charge	<u>e To</u>	AECOM Ne	w Zeal:	and Limited			Signature	•
Result	s To x Results	☑ Mail Cli	ent	☑ Mail Submi	itter		Chilled [Frozen H.O.C
🖸 En	nail Resul	ts <u>Max.Nightin</u>	<u>gale@</u>	aecom.com		Sample Anelysis deta	ails checked	
	4VB)	D)FELONIALA	<u>NFO</u>	<u>RMA (1911)</u>				High es, please contact the lab first)
Samp	le Types					Potable Water (LAS/EU)	Po12	Potable Water (NZDWS)
Waters		Effluent	G	Geothermal Leachate	Pot1	Audit Monitoring	Pot3	Potable Water (other)
1	GW	Ground Weter Surface Water	S	Saline		Check Monitoring	Pooi	Swimming/Spa Pool
	TW	Trade Waste				Sludge	PL	Plant
Solids	ES	Soil	SE M	Sediment Miscellaneous	SL FS	FS Fish/shellfish/biota	BM	BM Biological Material
Other	<u> </u>	<u>o oil</u>	<u> </u>	Sample	Sample			
No.	Sample_I	Nam <u>e</u>		Date & Time	Туре	Tests Required		
1	SAH017	0.2		5/14/2018	Soil	Metals		
2	SAH017	_0.6		5/14/2018	Soil	Hold Cold		
3	SAH017	_1.1		5/14/2018	Soil	Hold Cold		
4	SAH017	_3.0-3.4		5/14/2018	Soil	Hold Cold		
5						<u> </u>		
6					. 			
7								
8								
9								
10	1							O Have days good again
	<u> </u>							Continued on next page

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

0508 HILL LAB (44 555 22) Т Т

- +64 7 858 2000
- Ε mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 1

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	1984837	SPv2
Contact:	N Macorison	Date Received:	18-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	02-May-2019	(Amended)
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.7.5	
	Auckland 1140	Client Reference:	60563280/3.7.5	
		Submitted By:	Kate Feickert	

Sample Type: Soil								
	Sample Name:	DH108_0.2 14-May-2018 2:30						
		pm						
	Lab Number:	1984837.1						
Heavy Metals, Screen Level								
Total Recoverable Arsenic	mg/kg dry wt	3	-	-	-	-		
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	-	-	-		
Total Recoverable Chromium	mg/kg dry wt	25	-	-	-	-		
Total Recoverable Copper	mg/kg dry wt	13	-	-	-	-		
Total Recoverable Lead	mg/kg dry wt	11.9	-	-	-	-		
Total Recoverable Nickel	mg/kg dry wt	22	-	-	-	-		
Total Recoverable Zinc	mg/kg dry wt	34	-	-	-	-		

Analyst's Comments

Amended Report: This certificate of analysis replaces an earlier report issued on 24 May 2018 at 12:34 pm Reason for amendment: Sample IDs amended as requested.

Appendix No.1 - Chain of Custody

Summarv of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc Client Services Manager - Environmental

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Client	A V	VORLD LEADER	RIN A	NALYTICAL SE	TIES ERVICES	R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealan	Bessius	Date Recv: 18-May-18 11:38 8 4837 ad by: Nathaniel Sue
Name		M New Zealand 1				Office use only Job	D N 311984	8374
Address		ox 4241, Shortlan	d Stree	et		CEPANNOR C		DV REGORD
AUCKLA						Sent to	Date & Tin	
Phone	09 967	7 9200	Fa		<u> </u>	Hill Laboratories	Name:	
Client Re	ference		605 <u>63</u> 2	280/3.7.5			Signature:	
Quote No	<u> </u>		Order N	lumber		Please tick if you require COC to be faxed back	olgnature.	
	y Contac tted By	Kate Feicke	rt			Received at Hill Laboratories	Date & Tir Name: Signature.	
Charge	<u>e To</u>	AECOM Ne	w Zeal:	and Limited			Signature	•
Result	s To x Results	🗹 Mail Cli	ent	☑ Mail Submi	itter		Chilled [Frozen H.O.C
🖸 En	nail Resul	ts <u>Max.Nightin</u>	<u>gale@</u>	aecom.com		Sample Anelysis deta	ails checked	
	4VB)	D)FELONIALA	<u>NFO</u>	<u>RMA (1911)</u>				High es, please contact the lab first)
Samp	le Types					Potable Water (LAS/EU)	Po12	Potable Water (NZDWS)
Waters		Effluent	G	Geothermal Leachate	Pot1	Audit Monitoring	Pot3	Potable Water (other)
1	GW	Ground Weter Surface Water	S	Saline		Check Monitoring	Pooi	Swimming/Spa Pool
	TW	Trade Waste				Sludge	PL	Plant
Solids	ES	Soil	SE M	Sediment Miscellaneous	SL FS	FS Fish/shellfish/biota	BM	BM Biological Material
Other	<u> </u>	<u>o oil</u>	<u> </u>	Sample	Sample			
No.	Sample_I	Nam <u>e</u>		Date & Time	Туре	Tests Required		
1	SAH017	0.2		5/14/2018	Soil	Metals		
2	SAH017	_0.6		5/14/2018	Soil	Hold Cold		
3	SAH017	_1.1		5/14/2018	Soil	Hold Cold		
4	SAH017	_3.0-3.4		5/14/2018	Soil	Hold Cold		
5						<u> </u>		
6					. 			
7								
8								
9								
10	1							O Have days good again
	<u> </u>							Continued on next page

Page 1 of 3

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	1985842	SPv1
Contact:	N Macorison	Date Received:	21-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	28-May-2018	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.7.5	
	Auckland 1140	Client Reference:	AMETI	
		Submitted By:	Max Nightingale	

Sample Type: Soil						
:	Sample Name:	SAH030_0.5	SAH030_2.0	SAH031_0.5	SAH031_1.3	
		18-May-2018	18-May-2018	18-May-2018	18-May-2018	
la di dala Tanta	Lab Number:	1985842.2	1985842.5	1985842.7	1985842.9	
Individual Tests				1		1
Dry Matter	g/100g as rcvd	87	82	-	74	-
Heavy Metals, Screen Level				1	1	
Total Recoverable Arsenic	mg/kg dry wt	4	-	5	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	< 0.10	-	-
Total Recoverable Chromium	mg/kg dry wt	21	-	32	-	-
Total Recoverable Copper	mg/kg dry wt	25	-	12	-	-
Total Recoverable Lead	mg/kg dry wt	16.4	-	16.0	-	-
Total Recoverable Nickel	mg/kg dry wt	26	-	22	-	-
Total Recoverable Zinc	mg/kg dry wt	89	-	41	-	-
BTEX in Soil by Headspace G	C-MS					
Benzene	mg/kg dry wt	< 0.05	< 0.05	-	-	-
Toluene	mg/kg dry wt	< 0.05	< 0.05	-	-	-
Ethylbenzene	mg/kg dry wt	< 0.05	< 0.05	-	-	-
m&p-Xylene	mg/kg dry wt	< 0.10	< 0.10	-	-	-
o-Xylene	mg/kg dry wt	< 0.05	< 0.05	-	-	-
Total Petroleum Hydrocarbons	s in Soil					
C7 - C9	mg/kg dry wt	< 8	< 8	-	-	-
C10 - C14	mg/kg dry wt	< 20	< 20	-	-	-
C15 - C36	mg/kg dry wt	< 40	< 40	-	-	-
Total hydrocarbons (C7 - C36)) mg/kg dry wt	< 70	< 70	-	-	-
BTEX in VOC Soils by Heads	pace GC-MS			1	1	I
Benzene	mg/kg dry wt	-	-	-	< 0.3	-
Ethylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Toluene	mg/kg dry wt	-	-	-	< 0.3	-
m&p-Xylene	mg/kg dry wt	-	-	-	< 0.5	-
o-Xylene	mg/kg dry wt	-	-	-	< 0.3	-
Halogenated Aliphatics in VO	C Soils by Headspa	ce GC-MS				
Bromomethane (Methyl Bromic	de) mg/kg dry wt	-	-	-	< 0.3	-
Carbon tetrachloride	mg/kg dry wt	-	-	-	< 0.3	-
Chloroethane	mg/kg dry wt	-	-	-	< 0.3	-
Chloromethane	mg/kg dry wt	-	-	-	< 0.3	-
1,2-Dibromo-3-chloropropane	mg/kg dry wt	-	-	-	< 0.5	-
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	-	-	-	< 0.3	-
Dibromomethane	mg/kg dry wt	-	-	-	< 0.3	-
1,3-Dichloropropane	mg/kg dry wt	-	-	-	< 0.3	-
Dichlorodifluoromethane	mg/kg dry wt	-	_	-	< 0.5	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Sample Type: Soil	Some la Marca	SVH030 0 E	SVH030 3.0	SVH031 0 E	SVR031 4 3	
Ś	Sample Name:	SAH030_0.5 18-May-2018	SAH030_2.0 18-May-2018	SAH031_0.5 18-May-2018	SAH031_1.3 18-May-2018	
	Lab Number:	1985842.2	1985842.5	1985842.7	1985842.9	
Halogenated Aliphatics in VOC	Soils by Headspa	ce GC-MS				
1,1-Dichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,2-Dichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,1-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
cis-1,2-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
rans-1,2-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
Dichloromethane (methylene	mg/kg dry wt	-	-	-	< 3	-
chloride)						
1,2-Dichloropropane	mg/kg dry wt	-	-	-	< 0.3	-
1,1-Dichloropropene	mg/kg dry wt	-	-	-	< 0.3	-
cis-1,3-Dichloropropene	mg/kg dry wt	-	-	-	< 0.3	-
rans-1,3-Dichloropropene	mg/kg dry wt	-	-	-	< 0.3	-
Hexachlorobutadiene	mg/kg dry wt	-	-	-	< 0.3	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,1,2,2-Tetrachloroethane	mg/kg dry wt	-	-	-	< 0.3	-
Fetrachloroethene tetrachloroethylene)	mg/kg dry wt	-	-	-	< 0.3	-
1,1,1-Trichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,1,2-Trichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
Trichloroethene trichloroethylene)	mg/kg dry wt	-	-	-	< 0.3	-
Trichlorofluoromethane	mg/kg dry wt	-	-	_	< 0.3	-
1,2,3-Trichloropropane	mg/kg dry wt	-	-	-	< 0.5	
,1,2-Trichlorotrifluoroethane	mg/kg dry wt	-	-	-	< 0.3	-
Freon 113)	ma/lea da cut				< 0.3	
/inyl chloride	mg/kg dry wt		-	-	< 0.3	-
Haloaromatics in VOC Soils by		S		1		
Bromobenzene	mg/kg dry wt	-	-	-	< 0.3	-
I,3-Dichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
1-Chlorotoluene	mg/kg dry wt	-	-	-	< 0.3	-
Chlorobenzene monochlorobenzene)	mg/kg dry wt	-	-	-	< 0.3	-
,2-Dichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
1,4-Dichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
2-Chlorotoluene	mg/kg dry wt	-	_	-	< 0.3	-
1,2,3-Trichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
1,2,4-Trichlorobenzene	mg/kg dry wt	-	_	-	< 0.3	-
1,3,5-Trichlorobenzene	mg/kg dry wt	-			< 0.3	-
Monoaromatic Hydrocarbons ir		denace GC-MS			10.0	
•		auspace GC-1013			0.0	
n-Butylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
ert-Butylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
sopropylbenzene (Cumene)	mg/kg dry wt	-	-	-	< 0.3	-
1-Isopropyltoluene (p-Cymene)		-	-	-	< 0.3	-
n-Propylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
sec-Butylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Styrene	mg/kg dry wt	-	-	-	< 0.3	-
,2,4-Trimethylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
,3,5-Trimethylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Ketones in VOC Soils by Head	Ispace GC-MS					
2-Butanone (MEK)	mg/kg dry wt	-	-	-	< 50	-
I-Methylpentan-2-one (MIBK)	mg/kg dry wt	-	-	-	< 9	-
Acetone	mg/kg dry wt	-	-	-	< 50	-
Methyl tert-butylether (MTBE)	mg/kg dry wt	-	-	-	< 0.3	-
Trihalomethanes in VOC Soils		-MS	1	1		
Bromodichloromethane	mg/kg dry wt	-	_	-	< 0.3	-
Bromoform (tribromomethane)	mg/kg dry wt	-	-	-	< 0.5	-
	ing/kg ury wt	=	_	_	< 0.5	-

Sample Type: Soil						
	Sample Name:	SAH030_0.5	SAH030_2.0	SAH031_0.5	SAH031_1.3	
	•	18-May-2018	18-May-2018	18-May-2018	18-May-2018	
	Lab Number:	1985842.2	1985842.5	1985842.7	1985842.9	
Trihalomethanes in VOC So	oils by Headspace GC	-MS				
Dibromochloromethane	mg/kg dry wt	-	-	-	< 0.3	-
Other VOC in Soils by Head	dspace GC-MS					
Carbon disulphide	mg/kg dry wt	-	-	-	0.08	-
Naphthalene	mg/kg dry wt	-	-	-	< 0.3	-
Analyst's Comments	6					

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	2, 7
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis US EPA 8260B. Tested on as received sample [KBIs:5782,26687,3629]	0.05 - 0.10 mg/kg dry wt	2, 5
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	2, 5
Volatile Organic Compounds Screening in Soil by Headspace GC-MS	Sonication extraction, Headspace, GC-MS SIM analysis. Tested on as received sample [KBIs:31662,37857,37921]	-	9
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	2, 5, 9

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

Ara Heron BSc (Tech) Client Services Manager - Environmental

	Hill Labo TRIED, TESTED	Pratorie	ED RJI	Hill Laboratories Li Duke Street, Hamili	mited
	ote No		Priva	ate Bag 3205 illion 3240, New Z	Job No: Date Recv: 21-May-18 12:36
	mary Contact <u>Markan son</u> Street mitted By Street Street Association			0508 HILL LAB (4	4 555 22) 198 5842
	nt Name 🖉 🗄 Salata Salata	· · · · · · · · · · · · · · · · · · ·	E	+64 7 858 2000 mail@hill-labs.co.r www.hill-laboratori	
Addr	ess and an and a second second				
	<u>A. 19963</u>	Postcode Nava		<u> 1.363,757,757,757,757</u>	3119058425
Phor		<u>013 (1.984)</u>		nt to Laboratories	Date & Time: https://doi.org/1011
Ema Cha	/ rge To		<u>`</u>	/ Tick if you require C to be emailed back	OC
	t Reference	·································		eived at	Signature: Date & Time:
Orde			Hill	Laboratories	Name:
Res	ults To Reports will be emailed to Prima Additional Reports will be sent as		<u> </u>		Signature:
_	nail Primary Contact 👘 📝 Email Subn	nitter 🗌 Ernail Cl	_{ient} ∣Cor	ndition Room Temp	□ Chilled □ Frozen
_	mail Other <u>Annexes and Annexes and Annexes</u>				
чц ССЭ	ther <u>Advances and Advances</u>			Sample and An	alysis details checked
				Signature:	
			Pr	_ ′ ' '''	.ow Normal High SAP, extra charge applies, please contact lab first)
No.	 	Sample Date	Rec	Urgent (A	SAP, extra charge applies, please contact lab first) Date:
No.	Sample Name	Date	Rec	Urgent (A	SAP, extra charge applies, please contact lab first)
	542030 0 2		Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote)
1	Standin D.2.	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Hauty course Advance / TEA / ETEA
1 2	544030 0 2 144030 20 3 144030 2310	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote)
1 2 3	Standin D.2.	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) How Source Account / IFA / ETEA Account / IFA / ETEA Account / IFA / ETEA Account / IFA / ETEA
1 2 3 4 5	544033 D 2 144034 20 3 544034 23:0 344034 23:0	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) How Down (If not as per Quote) Mound (If not as per Quote)
1 2 3 4 5	544030 0 2 149030 20 3 149030 200 320030 200 320030 200	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) How Down (If A / EAPA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1 2 3 4 5 6	544030 202 144030 203 144030 200 144030 200 144030 200 144030 200	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) HELD COLD ACCOUNT (FRA/EDEX ACCOUNT (FRA/E
1 2 3 4 5 6 7	544030 20 3 144030 20 3 544030 2300 544030 2300 544030 230 544030 230	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) HELD COLOR ALLANCE/ TEN/ETEN UNITED COLOR ALLANCE CLEASE
1 2 3 4 5 6 7 8	$\frac{544030}{244030} = 222$ $\frac{144030}{244030} = 220$ $\frac{544030}{24030} = 220$ $\frac{544030}{24030} = 220$ $\frac{544030}{24030} = 20.4$	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) How Down D How D How D How Down D How
1 2 3 4 5 6 7 8 9	$\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$	Date	Rec	Urgent (A	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) HELD CALD ALLAND / TEN / ETEX ALLAND ALLAND / TEN / ETEX ALLAND ALLAND / TEN / ETEX ALLAND ALLAND / TEX ALLAND ALLAN

Continued on next page

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22) Т

+64 7 858 2000

E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 3

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	1985842	SPv3
Contact:	N Macorison	Date Received:	21-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	02-May-2019	(Amended)
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.7.5	
	Auckland 1140	Client Reference:	AMETI	
		Submitted By:	Max Nightingale	

Sample Type: Soil

Sample Type: Soil						
	ample Name:	DH109_0.5 18-May-2018	DH109_2.0 18-May-2018	AME_EHA118_0. 5 18-May-2018	AME_EHA118_1. 3 18-May-2018	
	Lab Number:	1985842.2	1985842.5	1985842.7	1985842.9	
Individual Tests						
Dry Matter	g/100g as rcvd	87	82	-	74	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	4	-	5	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	< 0.10	-	-
Total Recoverable Chromium	mg/kg dry wt	21	-	32	-	-
Total Recoverable Copper	mg/kg dry wt	25	-	12	-	-
Total Recoverable Lead	mg/kg dry wt	16.4	-	16.0	-	-
Total Recoverable Nickel	mg/kg dry wt	26	-	22	-	-
Total Recoverable Zinc	mg/kg dry wt	89	-	41	-	-
BTEX in Soil by Headspace GC-	-MS					
Benzene	mg/kg dry wt	< 0.05	< 0.05	-	-	-
Toluene	mg/kg dry wt	< 0.05	< 0.05	-	-	-
Ethylbenzene	mg/kg dry wt	< 0.05	< 0.05	-	-	-
m&p-Xylene	mg/kg dry wt	< 0.10	< 0.10	-	-	-
o-Xylene	mg/kg dry wt	< 0.05	< 0.05	-	-	-
Total Petroleum Hydrocarbons in	n Soil					
C7 - C9	mg/kg dry wt	< 8	< 8	-	-	-
C10 - C14	mg/kg dry wt	< 20	< 20	-	-	-
C15 - C36	mg/kg dry wt	< 40	< 40	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	< 70	-	-	-
BTEX in VOC Soils by Headspa	ce GC-MS					
Benzene	mg/kg dry wt	-	-	-	< 0.3	-
Ethylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Toluene	mg/kg dry wt	-	-	-	< 0.3	-
m&p-Xylene	mg/kg dry wt	-	-	-	< 0.5	-
o-Xylene	mg/kg dry wt	-	-	-	< 0.3	-
Halogenated Aliphatics in VOC S	Soils by Headspa	ce GC-MS				
Bromomethane (Methyl Bromide)) mg/kg dry wt	-	-	-	< 0.3	-
Carbon tetrachloride	mg/kg dry wt	-	-	-	< 0.3	-
Chloroethane	mg/kg dry wt	-	-	-	< 0.3	-
Chloromethane	mg/kg dry wt	-	-	-	< 0.3	-
1,2-Dibromo-3-chloropropane	mg/kg dry wt	-	-	-	< 0.5	-
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	-	-	-	< 0.3	-
Dibromomethane	mg/kg dry wt	-	-	-	< 0.3	-
1,3-Dichloropropane	mg/kg dry wt	-	-	-	< 0.3	-
Dichlorodifluoromethane	mg/kg dry wt	-	-	-	< 0.5	-
1,1-Dichloroethane	mg/kg dry wt	-	_	-	< 0.3	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

	Sample Name:	DH109 0.5	DH109 2.0	AME EHA118 0.	AME EHA118 1.	
·	Sample Name:	18-May-2018	18-May-2018	5 18-May-2018	3 18-May-2018	
	Lab Number:	1985842.2	1985842.5	1985842.7	1985842.9	
Halogenated Aliphatics in VOC	C Soils by Headspa	ce GC-MS	``````````````````````````````````````			
1,2-Dichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,1-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
cis-1,2-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
trans-1,2-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
Dichloromethane (methylene chloride)	mg/kg dry wt	-	-	-	< 3	-
1,2-Dichloropropane	mg/kg dry wt	-	-	-	< 0.3	-
1,1-Dichloropropene	mg/kg dry wt	-	-	-	< 0.3	-
cis-1,3-Dichloropropene	mg/kg dry wt	-	-	-	< 0.3	-
trans-1,3-Dichloropropene	mg/kg dry wt	-	-	-	< 0.3	-
Hexachlorobutadiene	mg/kg dry wt	-	-	-	< 0.3	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,1,2,2-Tetrachloroethane	mg/kg dry wt	-	-	-	< 0.3	-
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	-	-	-	< 0.3	-
1,1,1-Trichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,1,2-Trichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	-	-	< 0.3	-
Trichlorofluoromethane	mg/kg dry wt	-	-	-	< 0.3	-
1,2,3-Trichloropropane	mg/kg dry wt	-	-	-	< 0.5	-
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	-	-	-	< 0.3	-
Vinyl chloride	mg/kg dry wt	-	-	-	< 0.3	-
Haloaromatics in VOC Soils by	y Headspace GC-M	IS				
Bromobenzene	mg/kg dry wt	-	-	-	< 0.3	-
1,3-Dichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
4-Chlorotoluene	mg/kg dry wt	-	_	-	< 0.3	-
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	-	-	-	< 0.3	-
1,2-Dichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
1,4-Dichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
2-Chlorotoluene	mg/kg dry wt	-	-	-	< 0.3	-
1,2,3-Trichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
1,2,4-Trichlorobenzene	mg/kg dry wt	-	-	-	< 0.3	-
1,3,5-Trichlorobenzene	mg/kg dry wt	-	_	_	< 0.3	-
Monoaromatic Hydrocarbons i		adspace GC-MS			1010	
n-Butylbenzene	2		_	_	< 0.3	-
tert-Butylbenzene	mg/kg dry wt mg/kg dry wt	-	-	-	< 0.3	-
Isopropylbenzene (Cumene)	mg/kg dry wt	-	_	-	< 0.3	-
4-Isopropyltoluene (p-Cymene)		-	_	-	< 0.3	-
n-Propylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
sec-Butylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Styrene	mg/kg dry wt	-	-	-	< 0.3	-
1,2,4-Trimethylbenzene		-	-	-	< 0.3	-
1,2,4-Trimethylbenzene	mg/kg dry wt mg/kg dry wt	-	-	-	< 0.3	-
Ketones in VOC Soils by Head					< 0.0	
2-Butanone (MEK)	mg/kg dry wt	-	-	-	< 50	-
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	-	-	-	< 9	-
Acetone	mg/kg dry wt	-	-	-	< 50	-
Methyl tert-butylether (MTBE)	mg/kg dry wt	-	-	-	< 0.3	-
Trihalomethanes in VOC Soils	by Headspace GC	-MS				
Bromodichloromethane	mg/kg dry wt	-	-	-	< 0.3	-
Bromoform (tribromomethane)		-	-	-	< 0.5	-
Chloroform (Trichloromethane)		-	-	-	< 0.3	-
Dibromochloromethane	mg/kg dry wt	_	_	_	< 0.3	

Sample Type: Soil						
	Sample Name:	DH109_0.5 18-May-2018	DH109_2.0 18-May-2018	AME_EHA118_0. 5 18-May-2018	AME_EHA118_1. 3 18-May-2018	
	Lab Number:	1985842.2	1985842.5	1985842.7	1985842.9	
Other VOC in Soils by H	leadspace GC-MS					
Carbon disulphide	mg/kg dry wt	-	-	-	0.08	-
Naphthalene	mg/kg dry wt	-	-	-	< 0.3	-

Analyst's Comments

Amended Report: This certificate of analysis replaces an earlier report issued on 02 May 2019 at 3:47 pm Reason for amendment: Sample IDs amended as per request.

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	2, 7
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis US EPA 8260B. Tested on as received sample [KBIs:5782,26687,3629]	0.05 - 0.10 mg/kg dry wt	2, 5
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	2, 5
Volatile Organic Compounds Screening in Soil by Headspace GC-MS	Sonication extraction, Headspace, GC-MS SIM analysis. Tested on as received sample [KBIs:31662,37857,37921]	-	9
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	2, 5, 9

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

iman

Kim Harrison MSc Client Services Manager - Environmental

	Hill Labo TRIED, TESTED	Pratorie	ED RJI	Hill Laboratories Li Duke Street, Hamili	mited
	ote No		Priva	ate Bag 3205 illion 3240, New Z	Job No: Date Recv: 21-May-18 12:36
	mary Contact (Markan Sold) (2000) mitted By (1998) (2000) (2000)			0508 HILL LAB (4	4 555 22) 198 5842
	nt Name 🖉 🗄 Salata Salata	· · · · · · · · · · · · · · · · · · ·	E	+64 7 858 2000 mail@hill-labs.co.r www.hill-laboratori	
Addr	ess and an and a second second				
	<u>A. 19963</u>	Postcode Nava		<u> 1.363,757,757,757,757</u>	3119058425
Phor		<u>013 (1.984)</u>		nt to Laboratories	Date & Time: https://doi.org/1011
Ema Cha	/ rge To		<u>`</u>	/ Tick if you require C to be emailed back	OC
	t Reference	·································		eived at	Signature: Date & Time:
Orde			Hill	Laboratories	Name:
Res	ults To Reports will be emailed to Primar Additional Reports will be sent as		<u> </u>		Signature:
_	mail Primary Contact 👘 📝 Email Subn	nitter 🗌 Ernail Cl	_{ient} ∣Cor	ndition Room Temp	□ Chilled □ Frozen
_	mail Other <u>Annexes and Annexes and Annexes</u>				
чц ССЭ	ther <u>Advances and Advances</u>			Sample and An	alysis details checked
				Signature:	
			Pr	_ ′ ' '''	.ow Normal High SAP, extra charge applies, please contact lab first)
No.	 	Sample Date	Rec	Urgent (A	SAP, extra charge applies, please contact lab first) Date:
No.	Sample Name	Date	Rec	Urgent (A	SAP, extra charge applies, please contact lab first)
	542030 0 2		Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote)
1	Standin D.2.	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Hauty course Advance / TEA / ETEA
1 2	544030 0 2 144030 20 3 144030 2310	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote)
1 2 3	Standin D.2.	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) How Source Account / IFA / ETEA Account / IFA / ETEA Account / IFA / ETEA Account / IFA / ETEA
1 2 3 4 5	544033 D 2 144034 20 3 544034 23:0 344034 23:0	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) How Down (If not as per Quote) Mound (If not as per Quote)
1 2 3 4 5	544030 0 2 149030 20 3 149030 200 320030 200 320030 200	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) How Down (If A / EAPA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1 2 3 4 5 6	544030 202 144030 203 144030 200 144030 200 144030 200 144030 200	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) HELD COLD ACCOUNT (FRA/EDEX ACCOUNT (FRA/E
1 2 3 4 5 6 7	544030 20 3 144030 20 3 544030 2300 544030 2300 544030 230 544030 230	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) HELD COLOR ALLANCE/ TEN/ETEN UNITED COLOR ALLANCE CLEASE
1 2 3 4 5 6 7 8	$\frac{544030}{244030} = 222$ $\frac{144030}{244030} = 220$ $\frac{544030}{24030} = 220$ $\frac{544030}{24030} = 220$ $\frac{544030}{24030} = 20.4$	Date	Rec	Urgent (A uested Reporting Sample Type	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) How Down D How D How D How Down D How
1 2 3 4 5 6 7 8 9	$\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$ $\frac{544033502}{544033502}$	Date	Rec	Urgent (A	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) HELD CALD ALLAND / TEN / ETEX ALLAND ALLAND / TEN / ETEX ALLAND ALLAND / TEN / ETEX ALLAND ALLAND / TEX ALLAND ALLAN

Continued on next page

Page 1 of 3

Certificate of Analysis

Client: Contact:	C/- AECOM New Zealand Limited PO Box 4241 Shortland Street Auckland 1140			Dat Dat Qu Orc Clie	o No: te Received: te Reported: ote No: der No: ent Reference: bmitted By:	1991296 30-May-2018 12-Jun-2018 81048 12638 60563280 Max Nightinga	SPv1
Sample Ty	vpe: Soil						
		Sample Name:	SAH035_0.2 29-May-2018 12:00 pm				
	<u> </u>	Lab Number:	1991296.1				
Heavy Metals	s, Screen Level						
Total Recove	erable Arsenic	mg/kg dry wt	< 2	-	-	-	-
Total Recove	erable Cadmium	mg/kg dry wt	< 0.10	-	-	-	-
Total Recove	arable Chromium	mg/kg dry wt	35	-	-	-	-
Total Recove	erable Copper	mg/kg dry wt	24	-	-	-	-
Total Recove	erable Lead	mg/kg dry wt	14.0	-	-	-	-

Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	< 2	-	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	-	-	-	-
Total Recoverable Chromium	mg/kg dry wt	35	-	-	-	-
Total Recoverable Copper	mg/kg dry wt	24	-	-	-	-
Total Recoverable Lead	mg/kg dry wt	14.0	-	-	-	-
Total Recoverable Nickel	mg/kg dry wt	32	-	-	-	-
Total Recoverable Zinc	mg/kg dry wt	55	-	-	-	-
New Zealand Guidelines Semi Qua	ntitative Asbes	stos in Soil				
As Received Weight	g	331.2	-	-	-	-
Dry Weight	g	225.1	-	-	-	-
Ashed Weight	g	216.1	_	-	-	-
Moisture	%	32	-	-	-	-
Dry Sample Fraction >10mm	g ashed wt	< 0.1	-	-	-	-
Sample Fraction <10mm to >2mm	g ashed wt	147.7	-	-	-	-
Sample Fraction <2mm	g ashed wt	67.6	-	-	-	-
<2mm Subsample Weight	g ashed wt	57.9	-	-	-	-
Asbestos Presence / Absence		Asbestos NOT detected.	-	-	-	-
Description of Asbestos Form		-	-	-	-	-
Weight of Asbestos in ACM (Non- Friable)	g ashed wt	< 0.00001	-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	-	-	-	-
Weight of Asbestos as Fibrous Asbestos (Friable)	g ashed wt	< 0.00001	-	-	-	-
Asbestos as Fibrous Asbestos as % Total Sample*	6 of % w/w	< 0.001	-	-	-	-
Weight of Asbestos as Asbestos Fines (Friable)*	g ashed wt	< 0.00001	-	-	-	-
Asbestos as Asbestos Fines as % o Total Sample*	of %w/w	< 0.001	-	-	-	-
Combined Fibrous Asbestos + Asbestos Fines as % of Total Samp	% w/w ble*	< 0.001	-	-	-	-
Analyst's Comments						
Appendix No 1 - Chain of Cus	tody					

Appendix No.1 - Chain of Custody

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil								
Test	Method Description	Default Detection Limit	Sample No					
Individual Tests								
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1					
New Zealand Guidelines Semi Quantitative Asbestos in Soil*		-	1					
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil							
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1					
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1					
Ashed Weight	Sample ashed at 400°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1					
Moisture	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	1 %	1					
Sample Fraction >10mm	Sample ashed at 400°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1					
Sample Fraction <10mm and >2mm	Sample ashed at 400°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1					
Sample Fraction <2mm	Sample ashed at 400°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1					
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	1					
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	1					
Weight of Asbestos in ACM (Non- Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1					
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1					
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1					
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1					
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1					
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1					
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1					

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

Ara Heron BSc (Tech) Client Services Manager - Environmental

Client		WORLD LEADER			ries ervices	R J Hill Laboratories Limite 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealar	Recei	Date Reco 991	296 anlel Sue
Addres		ox 4241, Shortland				Office use only Jo	b No:		
	AND 1140					CIERNINE (Here and the second second second second second second second second second second second second second second	DDYRE	(C)(C)(?]D
 Phone	09 96	7 9200	F	ex 09 960 920	 D1	Sent to	Date & 7	'ime: 29/05	5/2018
	leference		605	563280		Hill Laboratories	Name:	Max Nightin	ngale /
Quote I	lo 126 3 8	8	Order	Number 12638		Please tick if you	Signatur	e: M. Na	lu li
						require COC to be faxed back			· me
<u>Prima</u>	ry Contac	t Naomi Maco	rison			Received at Hill Laboratories	Date & T	îme:	· · · · · ·
Subm	itted By	Max Nighting					Name:	· · · · ·	2 ¹ 2
Charg	<u>e To</u>		v Zea	land Limited			Signatur	e:	
-	<mark>ts To</mark> ax Results mail Resu		orison	Mail Subm @aecom.com	litter	Condition <i>Room Temp</i> Sample Analysis deta	Chilled	Frozen	Temp: 2.5
Pleas	e email Co	oC on arrival at La	b rece	eption, po numt	ber 12638	Low Urgent (ASAP, extra	Normal a charge app		High lact lhe lab first)
	le Types	Effluent		Geothermal	Poti	Requested Reporting Date	Pot2	Potable Wa	ater (NZDWS)
Samr Waters	E GW SW	Effluent Ground Water Surface Water Trade Waste	G L S	Geothermal Leachate Seline	Pot1	Requested Reporting Date Potable Water (LAS/EU) Audit Monitoring Check Monitoring		Potable Wa Potable Wa Swimming/	ater (other)
	E GW	Ground Water	Ĺ	Leachate Seline	· . ·	Potable Water (LAS/EU) Audit Monitoring	Pot2 Pot3	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Water	E GW SW TW	Ground Water Surface Water Trade Waste	L S	Leachate Seline Sediment Miscellaneous	SL	Potable Water (LAS/EU) Audit Monitoring Check Monitoring	Pot2 Pot3 Pool	Potable Wa Swimming/ Plant	ater (other)
Waters Solids Other	E GW SW TW ES O	Ground Water Surface Water Trade Waste Soil O Oll	L S SE	Leachate Seline Sediment Miscellaneous Sample	SI FS Sample	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota	Pot2 Pot3 Pool PL	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters	E GW SW TW ES	Ground Water Surface Water Trade Waste Soil O Oll	L S SE	Leachate Seline Sediment Miscellaneous	SL	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No.	E GW SW TW ES O Sample N	Ground Water Surface Water Trade Waste Soil O Oll Vame 0.2	L S SE	Leachate Seline Sediment Miscellaneous Sample Date & Time	SI	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1	E GW SW TW ES O Sample N SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2	L S SE	Leachate Seline Sediment Miscellaneous Sample Date & Time 29/05/2018	SI FS Sample Type ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1	E GW SW TW ES O SAMDIE M SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018	Sample Type ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3 4	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3 4 5	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3 4 5 6	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3 4 5 6 7 8	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other 1 2 3 4 5 6 7	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool

Continued on next page

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 TRIED, TESTED AND TRUSTED Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22)

+64 7 858 2000 Т

E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 3

Certificate		
artiticata	of Abal	Nele
U GI III U AIG		10313
		-

Client:	AECOM New Zealand Limited	Lab No:	1991296	SPv2
Contact:	N Macorison	Date Received:	30-May-2018	
	C/- AECOM New Zealand Limited	Date Reported:	02-May-2019	(Amended)
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	12638	
	Auckland 1140	Client Reference:	60563280	
		Submitted By:	Max Nightingale	

Sample Type: Soil					
Sample Nam	e: DH102_0.2 29-May-2018 12:00 pm				
Lab Numbe					
Heavy Metals, Screen Level	·				
Total Recoverable Arsenic mg/kg dry	wt < 2	-	-	-	-
Total Recoverable Cadmium mg/kg dry	wt < 0.10	-	-	-	-
Total Recoverable Chromium mg/kg dry	wt 35	-	-	-	-
Total Recoverable Copper mg/kg dry	wt 24	-	-	-	-
Total Recoverable Lead mg/kg dry	wt 14.0	-	-	-	-
Total Recoverable Nickel mg/kg dry	wt 32	-	-	-	-
Total Recoverable Zinc mg/kg dry	wt 55	-	-	-	-
New Zealand Guidelines Semi Quantitative As	bestos in Soil				
As Received Weight	g 331.2	-	-	-	-
Dry Weight	g 225.1	-	-	-	-
Ashed Weight	g 216.1	-	-	-	-
Moisture	% 32	-	-	-	-
Dry Sample Fraction >10mm g ashed	wt < 0.1	-	-	-	-
Sample Fraction <10mm to >2mm g ashed	wt 147.7	-	-	-	-
Sample Fraction <2mm g ashed	wt 67.6	-	-	-	-
<2mm Subsample Weight g ashed	wt 57.9	-	-	-	-
Asbestos Presence / Absence	Asbestos NOT detected.	-	-	-	-
Description of Asbestos Form	-	-	-	-	-
Weight of Asbestos in ACM (Non- g ashed Friable)	wt < 0.00001	-	-	-	-
Asbestos in ACM as % of Total % w Sample*	/w < 0.001	-	-	-	-
Weight of Asbestos as Fibrous g ashed Asbestos (Friable)	wt < 0.00001	-	-	-	-
Asbestos as Fibrous Asbestos as % of % w Total Sample*	/w < 0.001	-	-	-	-
Weight of Asbestos as Asbestos g ashed Fines (Friable)*	wt < 0.00001	-	-	-	-
Asbestos as Asbestos Fines as % of % w Total Sample*	/w < 0.001	-	-	-	-
Combined Fibrous Asbestos + % w Asbestos Fines as % of Total Sample*	/w < 0.001	-	-	-	-

Analyst's Comments

Amended Report: This certificate of analysis replaces an earlier report issued on 12 Jun 2018 at 2:43 pm Reason for amendment: Sample IDs amended as requested.

Appendix No.1 - Chain of Custody

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil								
Test	Method Description	Default Detection Limit	Sample No					
Individual Tests			·					
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1					
New Zealand Guidelines Semi Quantitative Asbestos in Soil*		-	1					
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil							
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1					
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1					
Ashed Weight	Sample ashed at 400°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1					
Moisture	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	1 %	1					
Sample Fraction >10mm	Sample ashed at 400°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1					
Sample Fraction <10mm and >2mm	Sample ashed at 400°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1					
Sample Fraction <2mm	Sample ashed at 400°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1					
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	1					
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	1					
Weight of Asbestos in ACM (Non- Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1					
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1					
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1					
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1					
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1					
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1					
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1					

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

Human

Kim Harrison MSc Client Services Manager - Environmental

Client		WORLD LEADER			ries ervices	R J Hill Laboratories Limite 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealar	Recei	Date Reco 991	296 anlel Sue
Addres		ox 4241, Shortland				Office use only Jo	b No:		
	AND 1140					CIERNINE (Here and the second second second second second second second second second second second second second second	DDYRE	(C)(C)(?]D
 Phone	09 96	7 9200	F	ex 09 960 920	 D1	Sent to	Date & 7	'ime: 29/05	5/2018
	leference		605	563280		Hill Laboratories	Name:	Max Nightin	ngale /
Quote I	lo 126 3 8	8	Order	Number 12638		Please tick if you	Signatur	e: M. Na	lu li
						require COC to be faxed back			· me
<u>Prima</u>	ry Contac	t Naomi Maco	rison			Received at Hill Laboratories	Date & T	îme:	· · · · · ·
Subm	itted By	Max Nighting					Name:	· · · · ·	2 ¹ 2
Charg	<u>e To</u>		v Zea	land Limited			Signatur	e:	
-	<mark>ts To</mark> ax Results mail Resu		orison	Mail Subm @aecom.com	litter	Condition <i>Room Temp</i> Sample Analysis deta	Chilled	Frozen	Temp: 2.5
Pleas	e email Co	oC on arrival at La	b rece	eption, po numt	ber 12638	Low Urgent (ASAP, extra	Normal a charge app		High lact lhe lab first)
	le Types	Effluent		Geothermal	Poti	Requested Reporting Date	Pot2	Potable Wa	ater (NZDWS)
Samr Waters	E GW SW	Effluent Ground Water Surface Water Trade Waste	G L S	Geothermal Leachate Seline	Pot1	Requested Reporting Date Potable Water (LAS/EU) Audit Monitoring Check Monitoring		Potable Wa Potable Wa Swimming/	ater (other)
	E GW	Ground Water	Ĺ	Leachate Seline	· . ·	Potable Water (LAS/EU) Audit Monitoring	Pot2 Pot3	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Water	E GW SW TW	Ground Water Surface Water Trade Waste	L S	Leachate Seline Sediment Miscellaneous	SL	Potable Water (LAS/EU) Audit Monitoring Check Monitoring	Pot2 Pot3 Pool	Potable Wa Swimming/ Plant	ater (other)
Waters Solids Other	E GW SW TW ES O	Ground Water Surface Water Trade Waste Soil O Oll	L S SE	Leachate Seline Sediment Miscellaneous Sample	SI FS Sample	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota	Pot2 Pot3 Pool PL	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters	E GW SW TW ES	Ground Water Surface Water Trade Waste Soil O Oll	L S SE	Leachate Seline Sediment Miscellaneous	SL	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No.	E GW SW TW ES O Sample N	Ground Water Surface Water Trade Waste Soil O Oll Vame 0.2	L S SE	Leachate Seline Sediment Miscellaneous Sample Date & Time	SI	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1	E GW SW TW ES O Sample N SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2	L S SE	Leachate Seline Sediment Miscellaneous Sample Date & Time 29/05/2018	SI FS Sample Type ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA	Pot2 Pot3 Pool PL BM	Potable Wa Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2	E GW SW TW ES O SAMDIE M SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018	Sample Type ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wi Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wi Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3 4	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wi Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3 4 5	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wi Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3 4 5 6	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wi Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other No. 1 2 3 4 5 6 7 8	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wi Swimming/ Plant	ater (other) ISpa Pool
Waters Solids Other 1 2 3 4 5 6 7	E GW SW TW ES O SAH035_ SAH035_ SAH035_	Ground Water Surface Water Trade Waste Soil O Oll Vame _0.2 _0.5 _1.4	L S SE	Leachate Seline Sediment <u>Miscellaneous</u> Sample Date & Time 29/05/2018 29/05/2018 29/05/2018	Sample Type ES ES ES	Potable Water (LAS/EU) Audit Monitoring Check Monitoring Sludge FS Fish/shellfish/blota Tests Required Metals + Asbestos (WA Hold Cold Hold Cold	Pot2 Pot3 Pool PL BM	Potable Wi Swimming/ Plant	ater (other) ISpa Pool

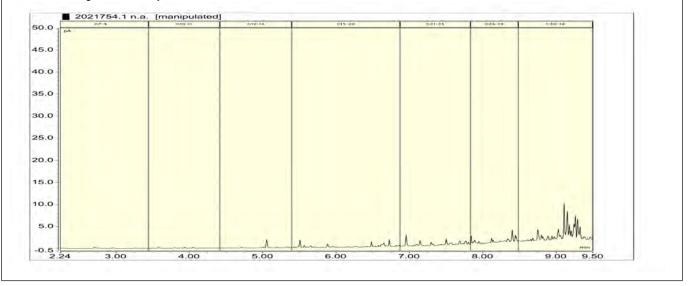
Continued on next page

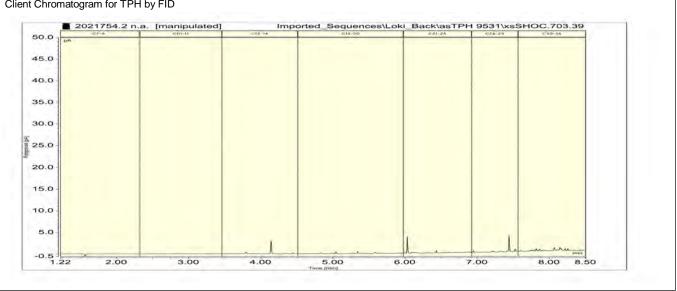
Page 1 of 4

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	2021754	SPv1
Contact:	N Macorison	Date Received:	27-Jul-2018	
	C/- AECOM New Zealand Limited	Date Reported:	03-Aug-2018	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280	
	Auckland 1140	Client Reference:	AMETI	
		Submitted By:	Max Nightingale	

Sample Type: Sediment					
Sample Nar	ne: AMETI_SED01 26-Jul-2018	AMETI_SED02 26-Jul-2018			
Lab Numb	er: 2021754.1	2021754.2			
Individual Tests	i.				
Dry Matter g/100g as	rcvd 46	44	-	-	-
Heavy metal, trace level As,Cd,Cr,Cu,Ni,Pb,	Zn		1		
Total Recoverable Arsenic mg/kg dr	y wt 8.1	9.7	-	-	-
Total Recoverable Cadmium mg/kg dr	y wt 0.093	0.067	-	-	-
Total Recoverable Chromium mg/kg dr	y wt 27	27	-	-	-
Total Recoverable Copper mg/kg dr	y wt 47	32	-	-	-
Total Recoverable Lead mg/kg dr	y wt 57	34	-	-	-
Total Recoverable Nickel mg/kg dr	y wt 21	12.6	-	-	-
Total Recoverable Zinc mg/kg dr	y wt 220	220	-	-	-
New Zealand Guidelines Semi Quantitative	Asbestos in Soil				
As Received Weight	g 509.1	417.4	-	-	-
Dry Weight	g 403.0	310.4	-	-	-
Ashed Weight	g 198.3	177.2	-	-	-
Moisture	% 21	26	-	-	-
Dry Sample Fraction >10mm g ashe	d wt < 0.1	< 0.1	-	-	-
Sample Fraction <10mm to >2mm g ashe	d wt 115.8	112.5	-	-	-
Sample Fraction <2mm g ashe	d wt 81.5	63.4	-	-	-
<2mm Subsample Weight g ashe	d wt 51.3	63.4	-	-	-
Asbestos Presence / Absence	Asbestos NOT detected.	Asbestos NOT detected.	-	-	-
Description of Asbestos Form	-	-	-	-	-
Weight of Asbestos in ACM (Non- g ashe Friable)	d wt < 0.00001	< 0.00001	-	-	-
Asbestos in ACM as % of Total % Sample*	w/w < 0.001	< 0.001	-	-	-
Weight of Asbestos as Fibrous g ashe Asbestos (Friable)	d wt < 0.00001	< 0.00001	-	-	-
Asbestos as Fibrous Asbestos as % of % Total Sample*	w/w < 0.001	< 0.001	-	-	-
Weight of Asbestos as Asbestos g ashe Fines (Friable)*	d wt < 0.00001	< 0.00001	-	-	-
Asbestos as Asbestos Fines as % of % Total Sample*	w/w < 0.001	< 0.001	-	-	-
	w/w < 0.001	< 0.001	-	-	-
Polycyclic Aromatic Hydrocarbons Screening	g in Soil				
1-Methylnaphthalene mg/kg dr		< 0.03	-	-	-
2-Methylnaphthalene mg/kg dr		< 0.03	-	-	-
Perylene mg/kg dr		0.02	-	-	-




This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Sa	mple Name:	AMETI_SED01	AMETI_SED02			
	.ab Number:	26-Jul-2018 2021754.1	26-Jul-2018 2021754.2			
Polycyclic Aromatic Hydrocarbon			2021101.2			
Benzo[a]pyrene Potency	mg/kg dry wt	0.09	< 0.06	-	-	-
Equivalency Factor (PEF) NES		0.00				
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	0.09	< 0.06	-	-	-
Acenaphthylene	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Acenaphthene	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Anthracene	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Benzo[a]anthracene	mg/kg dry wt	0.04	0.03	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.05	0.02	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	0.08	0.03	-	-	-
Benzo[e]pyrene	mg/kg dry wt	0.05	< 0.03	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	0.08	0.04	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	0.03	< 0.03	-	-	-
Chrysene	mg/kg dry wt	0.04	0.02	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Fluoranthene	mg/kg dry wt	0.08	0.04	-	-	-
Fluorene	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.05	0.02	-	-	-
Naphthalene	mg/kg dry wt	< 0.11	< 0.11	-	-	-
Phenanthrene	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Pyrene	mg/kg dry wt	0.09	0.04	-	-	-
Total Petroleum Hydrocarbons in	Soil					
C7 - C9	mg/kg dry wt	< 13	< 13	-	-	-
C10 - C14	mg/kg dry wt	< 30	< 30	-	-	-
C15 - C36	mg/kg dry wt	580	144	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	580	144	-	-	-

Client Chromatogram for TPH by FID

2021754.2 AMETI_SED02 26-Jul-2018 Client Chromatogram for TPH by FID

Analyst's Comments

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests			
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-2
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-2
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	BaP Potency Equivalence calculated from Benz(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1 + Chrysene x 0.01 + Dibenz(a,h)anthracene x 1 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	1-2
Benzo[a]pyrene Toxic Equivalence (TEF)	BaP Toxic Equivalence calculated from Benzo(a)anthracene x 0.1 + BaP x 1 + Benzo(b)fluoranthene x 0.1 + Benzo(k) fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.1 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	1-2
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.002 - 60 mg/kg dry wt	1-2
Heavy metal, trace level As,Cd,Cr,Cu,Ni,Pb,Zn	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, trace level.	0.010 - 0.4 mg/kg dry wt	1-2
New Zealand Guidelines Semi Quantitative Asbestos in Soil*		-	1-2
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil		1
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-2
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-2

Test	Method Description	Default Detection Limit	Sample No
Ashed Weight	Sample ashed at 400°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-2
Moisture	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	1 %	1-2
Sample Fraction >10mm	Sample ashed at 400°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1-2
Sample Fraction <10mm and >2mm	Sample ashed at 400°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1-2
Sample Fraction <2mm	Sample ashed at 400°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g ashed wt	1-2
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	1-2
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	1-2
Weight of Asbestos in ACM (Non- Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1-2
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-2
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1-2
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-2
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g ashed wt	1-2
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-2
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-2

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental

Client	A WORLD LEADER IN	Orato	ries Services	Private Bag 3205 202 1/54
Name	AECOM New Zealand Limit	ed		Received by: Sachet Sharma
Addres	s PO Box 4241, Shortland Stu	reet		Office use only Job No:
AUCKL	AND 1140			CEVAIN OF CUS
Phone	09 967 9200	Fax 09 960 92	01	Sent to Date & Time:
Client F	Reference AMETI		<u> </u>	Hill Laboratories
Quote I		r Number 60561	Please lick if you Signature: require COC to be faxed back	
Prima	ry Contact Naomi-maci	orisone aec	.om.con	Received at Date & Time:
-	itted By MAX Nightinga			Hill Laboratories
Charg	······································			
<u>onaiş</u>				Signature:
Resul	ts To 🛛 Mail Client ax Results	🗹 Mail Subm	litter	Condition Temp:
	mail Results <u>Kate fuicku</u>	rteaccom.	com	Sample Analysis details checked
	ABDITIONAL INFO	DERMANDION		Priority
-				Low 🗹 Normal 🗌 High
				Urgent (ASAP, extra charge applies, please contact the lab first)
				Requested Reporting Date:
Waters	le Types E Effiuent G	Geothermal	Pot1	Potable Water (LAS/EU) Pot2 Potable Water (NZDWS)
	GW Ground Water L	Leachete		Audit Monitoring Pot3 Potable Water (other)
	SW Surface Water 8	Saline	· 🗌 (Check Monitoring Pool Swimming/Spa Pool
Solids	TW Trade Waste	E Codiment	01	Nud Disu
Other	0 0 0 0 M	E Sediment Miscellaneous		Sludge PL Plant FS Fish/shelifish/biota BM BM Biological Material
		Sample	Sample	
No.	Sample Name	Date & Time		Tests Required
1	AMETI_SEDØI	26.07.18	SNET SE	TPH, PAH, metals, ACM
2	AMETI_SED02	26.07.14	SE	ty »
3				
4				
5				
6				
7				
8	· · · · · · · · · · · · · · · · · · ·			
9				
10				
				Continued on next page

Continued on next page

Page 1 of 3

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	2035377	SPv1
Contact:	N Macorison	Date Received:	22-Aug-2018	
	C/- AECOM New Zealand Limited	Date Reported:	29-Aug-2018	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.3.1	
	Auckland 1140	Client Reference:	60563280/3.3.1	
		Submitted By:	Suresh Nuthalapati	

Sample Name AME_EHA101_0 1-0.2 AME_EHA101_0 90.902018 AME_EHA103_0 90.902018 AME_EHA103_0 10.002 AME_EHA103_0 10.00237.5 Z003377.6 Z00377.6 Z00377.6 Z00377.7 Z016 Z010 Z0107 0107	Sample Type: Soil									
20Aug201820Aug201820Aug201820Aug201820Aug201820Aug2018Individual Tests2039377.0 <t< th=""><th>S</th><th>Sample Name:</th><th>AME_EHA101_0.</th><th>AME_EHA101_0.</th><th>AME_EHA103_0.</th><th>AME_EHA103_0.</th><th>AME_EHA104_0.</th></t<>	S	Sample Name:	AME_EHA101_0.	AME_EHA101_0.	AME_EHA103_0.	AME_EHA103_0.	AME_EHA104_0.			
Lab Number: 2035377.1 2035377.2 2035377.4 2035377.5 2035377.7 Individual Tests <										
Individual Tests 0 75 - 67 - Heavy Metals, Screen Level - 75 - 67 - Total Recoverable Arsenic mg/kg dry vtl 3 - 3 2 2 Total Recoverable Chromium mg/kg dry vtl 30 - 32 7 27 Total Recoverable Chromium mg/kg dry vtl 14 - 7 6 9 Total Recoverable Copper mg/kg dry vtl 14 - 7 6 9 Total Recoverable Nickel mg/kg dry vtl 29 - 15 10 14 Total Recoverable Zinc mg/kg dry vtl - <0.06			•	-	-	0	0			
Dry Matter g/100g as revel - 75 - 67 - Heavy Metals, Screen Level - 75 3 2 2 Total Recoverable Arsenic mg/kg dry vt 3.0 - 3.2 7 27 Total Recoverable Codmium mg/kg dry vt 3.0 - 3.2 7 27 Total Recoverable Copper mg/kg dry vt 9.2 - 10.0 13.8 13.8 Total Recoverable Lead mg/kg dry vt 9.2 - 10.0 13.8 13.8 Total Recoverable Size mg/kg dry vt 9.2 - 3.8 16 36 BTEX in Soil by Headspace GC-MS - - 3.8 16 36 36 BTEX in Soil by Headspace GC-MS - <	Individual Teata	Lab Number:	2035377.1	2035377.2	2035377.4	2035377.5	2035377.7			
Heavy Metals, Screen Level Total Recoverable Arsenic mg/kg dry wt 3 - 3 2 2 Total Recoverable Cadmium mg/kg dry wt 30 - 322 7 27 Total Recoverable Corper mg/kg dry wt 30 - 322 7 27 Total Recoverable Corper mg/kg dry wt 92 - 10.0 13.8 13.8 Total Recoverable Nackel mg/kg dry wt 92 - 15 10 14 Total Recoverable Nackel mg/kg dry wt 45 - 38 16 36 BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt - <0.06		(100			Î.	~7	1			
Total Recoverable Arsenic mg/kg dry wt 3 - 3 2 2 Total Recoverable Cadmium mg/kg dry wt < 0.10		g/100g as rcvd	-	75	-	67	-			
Total Recoverable Cadmium mg/kg dry wt < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 Total Recoverable Copper mg/kg dry wt 30 - 32 7 27 Total Recoverable Copper mg/kg dry wt 14 - 7 6 9 Total Recoverable Lead mg/kg dry wt 92 - 115 10 14 Total Recoverable Lead mg/kg dry wt 45 - 38 16 36 BTEX in Soli by Headspace GC-MS Benzene mg/kg dry wt - <0.06			I	1	ï	1	T.			
Total Recoverable Chromium mg/kg dry wt 30 - 32 7 27 Total Recoverable Copper mg/kg dry wt 14 - 7 6 9 Total Recoverable Copper mg/kg dry wt 92 - 10.0 13.8 13.8 Total Recoverable Nickel mg/kg dry wt 92 - 38 16 36 BTEX In Soll by Headspace GC-MS mg/kg dry wt 45 - 38 16 36 BTEX In Soll by Headspace GC-MS -				-	-					
Total Recoverable Copper mg/kg dry wt 14 - 7 6 9 Total Recoverable Lead mg/kg dry wt 9.2 - 10.0 13.8 13.8 Total Recoverable Nickel mg/kg dry wt 29 - 15 10 14 Total Recoverable Nickel mg/kg dry wt 29 - 38 16 36 BTEX In Soil by Headspace GC-MS -				-						
Total Recoverable Lead mg/kg dry wt 9.2 . 10.0 13.8 13.8 Total Recoverable Nickel mg/kg dry wt 29 . 15 10 14 Total Recoverable Zinc mg/kg dry wt 45 . 38 16 36 BETEX in Soli by Headspace GC-MS Benzene mg/kg dry wt . <0.06			30	-						
Total Recoverable Nickel mg/kg dry wt 29 . 15 10 14 Total Recoverable Zinc mg/kg dry wt 45 . 38 16 36 BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt . <0.06	Total Recoverable Copper	mg/kg dry wt	14	-	7	6	9			
Total Recoverable Zinc mg/kg dry wt 45 38 16 36 BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt - <0.06	Total Recoverable Lead	mg/kg dry wt	9.2	-	10.0	13.8	13.8			
BTEX in Soil by Headspace GC-MS - < - < - - <th< td=""><td>Total Recoverable Nickel</td><td>mg/kg dry wt</td><td>29</td><td>-</td><td>15</td><td>10</td><td>14</td></th<>	Total Recoverable Nickel	mg/kg dry wt	29	-	15	10	14			
Benzene mg/kg dry wt - <0.06 - - Toluene mg/kg dry wt - <0.06	Total Recoverable Zinc	mg/kg dry wt	45	-	38	16	36			
Toluene mg/kg dry wt - < . Ethylbenzene mg/kg dry wt - <	BTEX in Soil by Headspace GO	C-MS								
Ethylbenzene mg/kg dry wt - < . m&p-Xylene mg/kg dry wt - <0.06	Benzene	mg/kg dry wt	-	< 0.06	-	-	-			
mapXylene mg/kg dry wt - < - - - o-Xylene mg/kg dry wt - <0.06	Toluene	mg/kg dry wt	-	< 0.06	-	-	-			
o-Xylenemg/kg dry wt<<<0.06Polycyclic Aromatic Hydrocarbons Screening in S1-Methylnaphthalenemg/kg dry wt<	Ethylbenzene	mg/kg dry wt	-	< 0.06	-	-	-			
Polycyclic Aromatic Hydrocarbons Screening in Sol 1-Methylnaphthalene mg/kg dry wt - - < 0.015	m&p-Xylene	mg/kg dry wt	-	< 0.11	-	-	-			
1-Methylnaphthalene mg/kg dry wt - - < 0.015 - 2-Methylnaphthalene mg/kg dry wt - - < 0.015	o-Xylene	mg/kg dry wt	-	< 0.06	-	-	-			
2-Methylnaphthalene mg/kg dry wt - - < Perylene mg/kg dry wt - - <<0.015	Polycyclic Aromatic Hydrocarbo	ons Screening in S	Soil	I	1	I	I			
Perylenemg/kg dry wt< < 0.015.Benzo[a]pyrene Potency Equivalency Factor (PEF) NESmg/kg dry wt< < 0.04	1-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.015	-			
Benzo[a]pyrene Potency Equivalency Factor (PEF) NESmg/kg dry wt mg/kg dry wt<<< </td <td>2-Methylnaphthalene</td> <td>mg/kg dry wt</td> <td>-</td> <td>-</td> <td>-</td> <td>< 0.015</td> <td>-</td>	2-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.015	-			
Equivalency Factor (PEF) NESmg/kg dry wt gm/kg dry wt Equivalence (TEF)mg/kg dry wt mg/kg dry wtImage: Constraint of the second s	Perylene	mg/kg dry wt	-	-	-	< 0.015	-			
Equivalence (TEF) mg/kg dry wt <-<0.015 Acenaphthylene mg/kg dry wt <-0.015	Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	-	-	-	< 0.04	-			
Acenaphthene mg/kg dry wt - - < 0.015 - Anthracene mg/kg dry wt - - < 0.015		mg/kg dry wt	-	-	-	< 0.04	-			
Anthracenemg/kg dry wt<<Benzo[a]anthracenemg/kg dry wt<	Acenaphthylene	mg/kg dry wt	-	-	-	< 0.015	-			
Benzo[a]anthracenemg/kg dry wt< 0.015-Benzo[a]pyrene (BAP)mg/kg dry wt< 0.015	Acenaphthene	mg/kg dry wt	-	-	-	< 0.015	-			
Benzo[a]pyrene (BAP)mg/kg dry wt<<0.015-Benzo[b]fluoranthene + Benzo[j]mg/kg dry wt<	Anthracene	mg/kg dry wt	-	-	-	< 0.015	-			
Benzo[b]fluoranthene + Benzo[j] mg/kg dry wt - - < 0.015 - Benzo[e]pyrene mg/kg dry wt - - <	Benzo[a]anthracene	mg/kg dry wt	-	-	-	< 0.015	-			
fluoranthene mg/kg dry wt - - <<0.015 - Benzo[e]pyrene mg/kg dry wt - - <<0.015	Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	-	< 0.015	-			
Benzo[g,h,i]perylene mg/kg dry wt - - < 0.015 - Benzo[k]fluoranthene mg/kg dry wt - - < 0.015] mg/kg dry wt	-	-	-	< 0.015	-			
Benzo[k]fluoranthene mg/kg dry wt - - < 0.015 - Chrysene mg/kg dry wt - - < 0.015	Benzo[e]pyrene	mg/kg dry wt	-	-	-	< 0.015	-			
Chrysene mg/kg dry wt - - < 0.015 - Dibenzo[a,h]anthracene mg/kg dry wt - - < 0.015	Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	< 0.015	-			
Dibenzo[a,h]anthracene mg/kg dry wt - - < 0.015 - Fluoranthene mg/kg dry wt - - < 0.015	Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	< 0.015	-			
Fluoranthene mg/kg dry wt - - < 0.015 - Fluorene mg/kg dry wt - - < 0.015	Chrysene	mg/kg dry wt	-	-	-	< 0.015	-			
Fluorene mg/kg dry wt - - < 0.015 -	Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	-	< 0.015	-			
	Fluoranthene	mg/kg dry wt	-	-	-	< 0.015	-			
Indeno(1,2,3-c,d)pyrene mg/kg dry wt < 0.015 -	Fluorene	mg/kg dry wt	-	-	-	< 0.015	-			
	Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	-	< 0.015	-			

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sample Type: Soil	ample Name:	AME EHA101 0	AME EHA101 0	AME EHA103 0	AME_EHA103_0.	AME EHA104 0
38	ampie name:	1-0.2	8-0.9	1-0.2	9-1.0	1-0.2
		20-Aug-2018	20-Aug-2018	20-Aug-2018	20-Aug-2018	20-Aug-2018
	Lab Number:	2035377.1	2035377.2	2035377.4	2035377.5	2035377.7
Polycyclic Aromatic Hydrocarbor	ns Screening in S	Soil				
Naphthalene	mg/kg dry wt	-	-	-	< 0.08	-
Phenanthrene	mg/kg dry wt	-	-	-	< 0.015	-
Pyrene	mg/kg dry wt	-	-	-	< 0.015	-
Total of Reported PAHs in Soil*	mg/kg	-	-	-	< 0.4	-
Total Petroleum Hydrocarbons ir	n Soil					
C7 - C9	mg/kg dry wt	-	< 8	-	-	-
C10 - C14	mg/kg dry wt	-	< 20	-	-	-
C15 - C36	mg/kg dry wt	-	< 40	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	< 70	-	-	-
Sa	ample Name:	AME_EHA104_0. 8-0.9 20-Aug-2018	AME_EHA111_0. 2-0.3 20-Aug-2018	AME_EHA111_0. 5-0.6 20-Aug-2018	AME_EHA111_0. 9-1.0 20-Aug-2018	
	Lab Number:	2035377.9	2035377.11	2035377.12	2035377.13	
Individual Tests						
Dry Matter	g/100g as rcvd	61	-	-	_	-
Heavy Metals, Screen Level	<u>g</u> g					
Total Recoverable Arsenic	mg/kg dry wt	-	5	3	3	_
Total Recoverable Cadmium	mg/kg dry wt		< 0.10	< 0.10	< 0.10	_
Total Recoverable Chromium	mg/kg dry wt	_	25	31	38	_
Total Recoverable Copper	mg/kg dry wt	_	12	13	6	_
Total Recoverable Lead	mg/kg dry wt	_	33	10.6	11.0	_
Total Recoverable Nickel	mg/kg dry wt	-	20	18	7	_
Total Recoverable Zinc	mg/kg dry wt		44	30	10	_
BTEX in Soil by Headspace GC-			••		10	
Benzene	mg/kg dry wt	< 0.08	_	_	_	_
Toluene	mg/kg dry wt	< 0.08		-		_
Ethylbenzene	mg/kg dry wt	< 0.08	_	_	_	_
m&p-Xylene	mg/kg dry wt	< 0.16	_			_
o-Xylene	mg/kg dry wt	< 0.08		_	_	
Total Petroleum Hydrocarbons ir						
C7 - C9	mg/kg dry wt	< 10	_	_	_	_
C10 - C14	mg/kg dry wt	< 10	-	-	-	-
C10 - C14 C15 - C36	mg/kg dry wt	< 40	-	-	-	-

Analyst's Comments

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1, 4-5, 7, 11-13
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis US EPA 8260B. Tested on as received sample [KBIs:5782,26687,3629]	0.05 - 0.10 mg/kg dry wt	2, 9
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, Dilution or SPE cleanup (if required), GC- MS SIM analysis (modified US EPA 8270). Tested on as received sample. [KBIs:5786,2805,2695]	-	5

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	2,9
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	2, 5, 9
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	BaP Potency Equivalence calculated from Benz(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(i)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1 + Chrysene x 0.01 + Dibenz(a,h)anthracene x 1 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	5
Benzo[a]pyrene Toxic Equivalence (TEF)	BaP Toxic Equivalence calculated from Benzo(a)anthracene x 0.1 + BaP x 1 + Benzo(b)fluoranthene x 0.1 + Benzo(k) fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.1 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	5
Total of Reported PAHs in Soil*	Sonication extraction, SPE cleanup, GC-MS SIM analysis.	0.3 mg/kg	5

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental

Quote	AECOM New Zealand ss 8 Mahuhu Crescent Reference	I Limited Fax Order Number 6056	R J Hill Laboratories Limite 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealar Office use only Jol Control Control Job No: Date Recv: 22-Aug-18 05:20 2035377 20353770 Received by: Nathaniel Sue Image: Subscription of the strength of the strenge strength of the strenge strength of the s		
	Submitted By SURESH NUTHALAPATI			Hill Laboratories	Nema:
Char	rge To Aecom Auc	kland			Signature:
□ F	Ilts To ☑ Mail Cl Fax Results			· · ·	Chilled □ Frozen 9¢(
⊡ E	Email Results <u>Naomin</u>	naconson@ae	com-cor	Sample Analysis deta Signature:	lls checked
	ADDITIONALI				Normal I High charge applies, please contact the lab first)
Sam Water	ple Types s E Effluent	G Geothermal	Pot1	Potable Water (LAS/EU)	Pot2 Potable Water (NZDWS)
	GW Ground Water SW Surface Water TW Trade Waste	L Leachate S Seline		Audit Monitoring Check Monitoring	Pot3 Potable Water (other) Pool Swimming/Spa Pool
Solids	ES Soil	SE Sediment	SL	Sludge	PL Plant
Other	0 0 0il	M Miscellaneous	FS Sample	FS Fish/shellfish/biota	BM BM Biological Material
No.	Sample Name	Date & Time	Туре	Tests Required/COWL/I	Initial/Final flow/Total Time
1	AME.HA101_01-0-2	20/8/18	ES		
2	AME_HAIOL-0.8-0-9	2018/18	ES		
3	AME.HA101.14-15	2018/18	ES	S.	
4	AME_HA103_04-02	2018/18	ES		
ŝ	AME_HAIO3_0.9.10	2018/18	ES		V.C.
Ŀ	AME-HA103-17-18	2018/18	ES		Mr.
7	AME-HA104-01-00	- 20/8/18	es		
8	AME_HA104_04-0	5 2018/18	ES -		
9	AME HAIO4 -08-0	9 2018/18	ES		
10	AME_HAID4-1-8-2-1	0 2018/18	es ا		

Appendix No.1 - Chain of Custody - Page 2 of 2

I	o.1 - Chain of Custody - Page 2 of 2 Sample Name	Sample Date & Time	Sample Type	Tests Required/COWL/Initial/Final flow/Total Time
11	AME_HAIN_0-2-0-3	3018118	हर	
12	AME_HAIII_05-0.6	2018118	ES .	· · · · · · · · · · · · · · · · · · ·
B	AME_HAIN_0-9-10	2018/18	63	
· · ·		2618/18	ES	
15	AME_HAND_0.2-0-3	2018118	Ë.S	1 Ca
	AME_ HAILU, 0 5-0.6	20/8/18	E1	
	AME_HA110_13-14	2018118	53	
	AME_HA110-17-18	2018/18	Es	E C C C C C C C C C C C C C C C C C C C
	AME_HAILO_19-2.0	2018/18	Es	No.
20	AME-HA121_0-2-0-3	2018/18	LЭ	
21	AME_HA121_0-8-0 9	2018118	Es	
22		2018/18	ES	
23	AME_HA121_19-20	2018/18	ES	
			:	
	~			
			3	
	,			

.

,

Page 1 of 3

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	2035379	SPv1
Contact:	N Macorison	Date Received:	22-Aug-2018	
	C/- AECOM New Zealand Limited	Date Reported:	29-Aug-2018	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.3.1	
	Auckland 1140	Client Reference:		
		Submitted By:	Suresh Nuthalapati	

Sample Type: Soil						
	Sample Name:	AME - HA122 - 0.15-0.25	AME - HA112 - 0.15-0.3	AME - HA112 - 0.9-1.0	AME - HA114 - 0.1-0.2	AME - HA114 - 0.7-0.8
	Lab Number:	2035379.1	2035379.4	2035379.5	2035379.8	2035379.9
Individual Tests						
Dry Matter	g/100g as rcvd	-	-	77	-	77
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	3	3	< 2	4	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	0.23	-
Total Recoverable Chromium	mg/kg dry wt	30	24	27	37	-
Total Recoverable Copper	mg/kg dry wt	11	5	10	35	-
Total Recoverable Lead	mg/kg dry wt	39	7.8	4.8	27	-
Total Recoverable Nickel	mg/kg dry wt	25	8	21	55	-
Total Recoverable Zinc	mg/kg dry wt	42	25	25	96	-
BTEX in Soil by Headspace	GC-MS			,	,	
Benzene	mg/kg dry wt	-	-	-	-	< 0.06
Toluene	mg/kg dry wt	-	-	-	-	< 0.06
Ethylbenzene	mg/kg dry wt	-	-	-	-	< 0.06
m&p-Xylene	mg/kg dry wt	-	-	-	-	< 0.11
o-Xylene	mg/kg dry wt	-	-	-	-	< 0.06
Polycyclic Aromatic Hydrocarl	bons Screening in S	Soil	1	1	1	l
1-Methylnaphthalene	mg/kg dry wt	-	-	< 0.013	-	-
2-Methylnaphthalene	mg/kg dry wt	-	-	< 0.013	-	-
Perylene	mg/kg dry wt	-	-	< 0.013	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NE	mg/kg dry wt S	-	-	< 0.04	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	-	-	< 0.04	-	-
Acenaphthylene	mg/kg dry wt	-	-	< 0.013	-	-
Acenaphthene	mg/kg dry wt	-	-	< 0.013	-	-
Anthracene	mg/kg dry wt	-	-	< 0.013	-	-
Benzo[a]anthracene	mg/kg dry wt	-	-	< 0.013	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	< 0.013	-	-
Benzo[b]fluoranthene + Benzo fluoranthene	o[j] mg/kg dry wt	-	-	< 0.013	-	-
Benzo[e]pyrene	mg/kg dry wt	-	-	< 0.013	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	< 0.013	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	-	< 0.013	-	-
Chrysene	mg/kg dry wt	-	-	< 0.013	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	< 0.013	-	-
Fluoranthene	mg/kg dry wt	-	-	< 0.013	-	-
Fluorene	mg/kg dry wt	-	-	< 0.013	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	< 0.013	-	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sample Type: Soil	I		A. N. A. T. A. S.	A.A.E		
S	Sample Name:	AME - HA122 -	AME - HA112 -	AME - HA112 -	AME - HA114 -	AME - HA114 -
	Lob Number	0.15-0.25 2035379.1	0.15-0.3 2035379.4	0.9-1.0 2035379.5	0.1-0.2 2035379.8	0.7-0.8 2035379.9
Dolyovalia Aramatia Hydrogarha	Lab Number:		2035379.4	2035379.5	2035379.0	2035379.9
Polycyclic Aromatic Hydrocarbo	-		1	0.07	1	
Naphthalene	mg/kg dry wt	-	-	< 0.07	-	-
Phenanthrene	mg/kg dry wt	-	-	< 0.013	-	-
Pyrene	mg/kg dry wt	-	-	< 0.013	-	-
Total of Reported PAHs in Soil*	* mg/kg	-	-	< 0.4	-	-
Total Petroleum Hydrocarbons	in Soil					
C7 - C9	mg/kg dry wt	-	-	-	-	< 8
C10 - C14	mg/kg dry wt	-	-	-	-	< 20
C15 - C36	mg/kg dry wt	-	-	-	-	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	-	-	-	< 70
S	Sample Name:	AME - HA114 -	AME - HA113 -	AME - HA113 -	AME - HA105 -	AME - HA105 -
		1.4-1.5	0.1-0.2	0.9-1.0	0.2-0.3	0.8-0.9
	Lab Number:	2035379.10	2035379.11	2035379.12	2035379.15	2035379.16
Individual Tests			1	1	1	1
Dry Matter	g/100g as rcvd	62	-	72	-	70
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	-	4	-	< 2	< 2
Total Recoverable Cadmium	mg/kg dry wt	-	0.59	-	0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	-	40	-	23	23
Total Recoverable Copper	mg/kg dry wt	-	43	-	13	13
Total Recoverable Lead	mg/kg dry wt	-	71	-	17.2	9.5
Total Recoverable Nickel	mg/kg dry wt	-	61	-	16	12
Total Recoverable Zinc	mg/kg dry wt	-	157	-	36	30
BTEX in Soil by Headspace GC						
		0.00	1	0.00	_	
Benzene	mg/kg dry wt	< 0.08	-	< 0.06		-
Toluene	mg/kg dry wt	< 0.08	-	< 0.06	-	-
Ethylbenzene	mg/kg dry wt	< 0.08	-	< 0.06	-	-
m&p-Xylene	mg/kg dry wt	< 0.16	-	< 0.12	-	-
o-Xylene	mg/kg dry wt	< 0.08	-	< 0.06	-	-
Polycyclic Aromatic Hydrocarbo	÷					
1-Methylnaphthalene	mg/kg dry wt	-	-	-	-	< 0.015
2-Methylnaphthalene	mg/kg dry wt	-	-	-	-	< 0.015
Perylene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	-	-	-	-	< 0.04
Benzo[a]pyrene Toxic	mg/kg dry wt	-	-	-	-	< 0.04
Equivalence (TEF)						
Acenaphthylene	mg/kg dry wt	-	-	-	-	< 0.015
Acenaphthene	mg/kg dry wt	-	-	-	-	< 0.015
Anthracene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[a]anthracene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[b]fluoranthene + Benzo[j fluoranthene] mg/kg dry wt	-	-	-	-	< 0.015
Benzo[e]pyrene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	-	< 0.015
Chrysene	mg/kg dry wt	-	-		-	< 0.015
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	-	-	< 0.015
Fluoranthene	mg/kg dry wt	-	-	-	-	< 0.015
					-	
Fluorene	mg/kg dry wt	-	-	-		< 0.015
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	-	-	< 0.015
Naphthalene	mg/kg dry wt	-	-	-	-	< 0.08
Phenanthrene	mg/kg dry wt	-	-	-	-	< 0.015
Pyrene	mg/kg dry wt	-	-	-	-	< 0.015
Total of Reported PAHs in Soil*	* mg/kg	-	-	-	-	< 0.4

Sample Type: Soil						
5	Sample Name:	AME - HA114 -	AME - HA113 -	AME - HA113 -	AME - HA105 -	AME - HA105 -
	-	1.4-1.5	0.1-0.2	0.9-1.0	0.2-0.3	0.8-0.9
	Lab Number:	2035379.10	2035379.11	2035379.12	2035379.15	2035379.16
Total Petroleum Hydrocarbons in Soil						
C7 - C9	mg/kg dry wt	< 10	-	< 9	-	-
C10 - C14	mg/kg dry wt	< 20	-	< 20	-	-
C15 - C36	mg/kg dry wt	< 40	-	< 40	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	-	< 70	-	-

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1, 4-5, 8, 11, 15-16			
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis US EPA 8260B. Tested on as received sample [KBIs:5782,26687,3629]	0.05 - 0.10 mg/kg dry wt	9-10, 12			
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, Dilution or SPE cleanup (if required), GC- MS SIM analysis (modified US EPA 8270). Tested on as received sample. [KBIs:5786,2805,2695]	-	5, 16			
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	9-10, 12			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	5, 9-10, 12, 16			
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	BaP Potency Equivalence calculated from Benz(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1 + Chrysene x 0.01 + Dibenz(a,h)anthracene x 1 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	5, 16			
Benzo[a]pyrene Toxic Equivalence (TEF)	BaP Toxic Equivalence calculated from Benzo(a)anthracene x 0.1 + BaP x 1 + Benzo(b)fluoranthene x 0.1 + Benzo(k) fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.1 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	5, 16			
Total of Reported PAHs in Soil*	Sonication extraction, SPE cleanup, GC-MS SIM analysis.	0.3 mg/kg	5, 16			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Horta

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental

Page 1 of 4

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	2036105	SPv1
Contact:	N Macorison	Date Received:	23-Aug-2018	
	C/- AECOM New Zealand Limited	Date Reported:	29-Aug-2018	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60563280/3.3.1	
	Auckland 1140	Client Reference:	60563280/3.3.1	
		Submitted By:	Suresh Nuthalapati	

Sample Type: Soil						
	Sample Name:				AME_HA117_1.7-	
		0.2 22-Aug-2018	0.7 22-Aug-2018	0.4 22-Aug-2018	1.8 22-Aug-2018	5-0.35 22-Aug-2018
	Lab Number:	2036105.1	2036105.2	2036105.3	2036105.4	2036105.6
Individual Tests			.1	_	.1	
Dry Matter	g/100g as rcvd	-	73	-	71	-
Heavy Metals, Screen Level			.1	<u> </u>	.1	
Total Recoverable Arsenic	mg/kg dry wt	4	-	3	4	<2
Total Recoverable Cadmium	mg/kg dry wt	0.20	-	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	37	-	47	51	13
Total Recoverable Copper	mg/kg dry wt	21	-	15	23	7
Total Recoverable Lead	mg/kg dry wt	37	-	11.1	16.9	11.3
Total Recoverable Nickel	mg/kg dry wt	27	-	25	37	10
Total Recoverable Zinc	mg/kg dry wt	80	-	38	32	19
BTEX in Soil by Headspace G	GC-MS					<u></u>
Benzene	mg/kg dry wt	-	< 0.06	-	-	-
Toluene	mg/kg dry wt	-	< 0.06	-	-	-
Ethylbenzene	mg/kg dry wt	-	< 0.06	-	-	-
m&p-Xylene	mg/kg dry wt	-	< 0.12	-	-	-
o-Xylene	mg/kg dry wt	-	< 0.06	-	-	-
Polycyclic Aromatic Hydrocarl	bons Screening in S	Soil	-	-	-	<u>-</u>
1-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.014	-
2-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.014	-
Perylene	mg/kg dry wt	-	-	-	< 0.014	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NE	mg/kg dry wt S	-	-	-	< 0.04	-
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	-	-	-	< 0.04	-
Acenaphthylene	mg/kg dry wt	-	-	-	< 0.014	-
Acenaphthene	mg/kg dry wt	-	-	-	< 0.014	-
Anthracene	mg/kg dry wt	-	-	-	< 0.014	-
Benzo[a]anthracene	mg/kg dry wt	-	-	-	< 0.014	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	-	< 0.014	-
Benzo[b]fluoranthene + Benzo fluoranthene	o[j] mg/kg dry wt	-	-	-	< 0.014	-
Benzo[e]pyrene	mg/kg dry wt	-	-	-	< 0.014	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	< 0.014	-
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	< 0.014	-
Chrysene	mg/kg dry wt	-	-	-	< 0.014	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	-	< 0.014	-
Fluoranthene	mg/kg dry wt	-	-	-	< 0.014	-
Fluorene	mg/kg dry wt	-	-	-	< 0.014	-
		1	1		1	

Indeno(1,2,3-c,d)pyrene

mg/kg dry wt

-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

-

< 0.014

-

-

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sample Type: Soil						
Sa	ample Name:	AME_HA115_0.1- 0.2 22-Aug-2018	AME_HA115_0.6- 0.7 22-Aug-2018	AME_HA117_0.3- 0.4 22-Aug-2018	AME_HA117_1.7- 1.8 22-Aug-2018	AME_HA116_0.2 5-0.35 22-Aug-2018
	Lab Number:	2036105.1	2036105.2	2036105.3	2036105.4	2036105.6
Polycyclic Aromatic Hydrocarbor	ns Screening in S	Soil				
Naphthalene	mg/kg dry wt	-	-	-	< 0.07	-
Phenanthrene	mg/kg dry wt	-	-	-	< 0.014	-
Pyrene	mg/kg dry wt	-	-	-	< 0.014	-
Total of Reported PAHs in Soil*	mg/kg	-	-	-	< 0.4	-
Total Petroleum Hydrocarbons in	n Soil					
C7 - C9	mg/kg dry wt	-	< 9	-	-	-
C10 - C14	mg/kg dry wt	-	< 20	-	-	-
C15 - C36	mg/kg dry wt	-	< 40	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	< 70	-	-	-
Sa	ample Name:	AME_HA116_0.8- 0.9 22-Aug-2018	AME_HA119_0.1 5-0.25 22-Aug-2018	AME_HA119_1.2- 1.3 22-Aug-2018	AME_HA120_0.4- 0.5 22-Aug-2018	AME_HA123_0.2 0.3 22-Aug-2018
	Lab Number:	2036105.7	2036105.10	2036105.11	2036105.13	2036105.16
Individual Tests						
Dry Matter	g/100g as rcvd	58	-	-	71	81
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	3	3	2	2	<2
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.12	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	3	32	31	41	13
Total Recoverable Copper	mg/kg dry wt	9	11	12	9	8
Total Recoverable Lead	mg/kg dry wt	42	14.0	22	12.3	9.6
Total Recoverable Nickel	mg/kg dry wt	4	19	16	16	15
Total Recoverable Zinc	mg/kg dry wt	12	26	40	27	19
Polycyclic Aromatic Hydrocarbor	ns Screening in S	Soil	·			,
1-Methylnaphthalene	mg/kg dry wt	< 0.017	-	-	-	-
2-Methylnaphthalene	mg/kg dry wt	< 0.017	-	-	-	-
Perylene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	< 0.05	-	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	< 0.05	-	-	-	-
Acenaphthylene	mg/kg dry wt	< 0.017	-	-	-	-
Acenaphthene	mg/kg dry wt	< 0.017	-	-	-	-
Anthracene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[a]pyrene (BAP) Benzo[b]fluoranthene + Benzo[j]	mg/kg dry wt mg/kg dry wt	< 0.017 < 0.017	-	-	-	-
fluoranthene Benzo[e]pyrene	mg/kg dry wt	< 0.017	-	-		-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.017		-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.017	-	-	-	-
Chrysene	mg/kg dry wt	< 0.017	_	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.017			-	-
Fluoranthene	mg/kg dry wt	< 0.017	_	_	-	-
Fluorene	mg/kg dry wt	< 0.017	-	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.017	-	-	-	-
Naphthalene	mg/kg dry wt	< 0.09	-	-	-	-
Phenanthrene	mg/kg dry wt	< 0.017	-	-	-	-
Pyrene	mg/kg dry wt	< 0.017	-	-	-	-
Total of Reported PAHs in Soil*	mg/kg	< 0.4	-	-	-	-
Pentachlorophenol Screening in			1	1	1	1
	-	I				0.05
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	-	< 0.05	< 0.05

Sample Type: Soil						
S	Sample Name:	AME_HA116_0.8- 0.9 22-Aug-2018	AME_HA119_0.1 5-0.25 22-Aug-2018	AME_HA119_1.2- 1.3 22-Aug-2018	AME_HA120_0.4- 0.5 22-Aug-2018	AME_HA123_0.2- 0.3 22-Aug-2018
	Lab Number:	2036105.7	2036105.10	2036105.11	2036105.13	2036105.16
Total Petroleum Hydrocarbons						
C7 - C9	mg/kg dry wt	< 10	-	-	-	-
C10 - C14	mg/kg dry wt	< 20	-	-	-	-
C15 - C36	mg/kg dry wt	< 40	-	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	-	-	-	-
S	ample Name:	AME_HA123_0.8 5-0.95 22-Aug-2018	AME_HA123_1.2- 1.3 22-Aug-2018			
	Lab Number:	2036105.17	2036105.18			
Individual Tests		1				
Dry Matter	g/100g as rcvd	74	71	-	-	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	< 2	< 2	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	-	-	-
Total Recoverable Chromium	mg/kg dry wt	13	11	-	-	-
Total Recoverable Copper	mg/kg dry wt	3	3	-	-	-
Total Recoverable Lead	mg/kg dry wt	5.7	4.4	-	-	-
Total Recoverable Nickel	mg/kg dry wt	7	6	-	-	-
Total Recoverable Zinc	mg/kg dry wt	18	16	-	-	-
Polycyclic Aromatic Hydrocarbo	ons Screening in S	Soil				
1-Methylnaphthalene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
2-Methylnaphthalene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Perylene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	< 0.04	< 0.04	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)	mg/kg dry wt	< 0.04	< 0.04	-	-	-
Acenaphthylene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Acenaphthene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Anthracene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Benzo[b]fluoranthene + Benzo[j fluoranthene] mg/kg dry wt	< 0.014	< 0.014	-	-	-
Benzo[e]pyrene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Chrysene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Fluoranthene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Fluorene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Naphthalene	mg/kg dry wt	< 0.07	< 0.07	-	-	-
Phenanthrene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Pyrene	mg/kg dry wt	< 0.014	< 0.014	-	-	-
Total of Reported PAHs in Soil'	f mg/kg	< 0.4	< 0.4	-	-	-

Analyst's Comments

Appendix No.1 - Chain of Custody

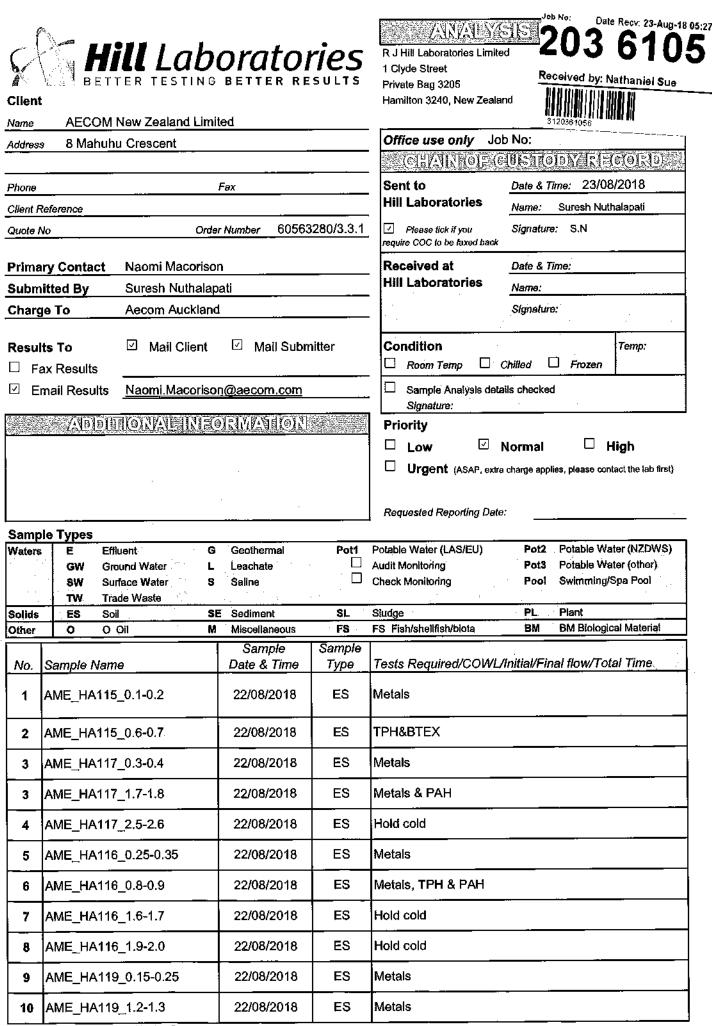
Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil	
Test	Method Description

Default Detection Limit Sample No

Test	Method Description	Default Detection Limit	Sample No
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	-	7
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1, 3-4, 6-7, 10-11, 13, 16-18
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis US EPA 8260B. Tested on as received sample [KBIs:5782,26687,3629]	0.05 - 0.10 mg/kg dry wt	2
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, Dilution or SPE cleanup (if required), GC- MS SIM analysis (modified US EPA 8270). Tested on as received sample. [KBIs:5786,2805,2695]	-	4, 17-18
Pentachlorophenol Screening in Soil by LCMSMS	Solvent extraction with sonication, dilution, analysis by LCMSMS with online SPE. Tested on dried sample	0.010 mg/kg dry wt	13, 16
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	2
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	2, 4, 7, 13, 16-18
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	BaP Potency Equivalence calculated from Benz(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1 + Chrysene x 0.01 + Dibenz(a,h)anthracene x 1 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	4, 7, 17-18
Benzo[a]pyrene Toxic Equivalence (TEF)	BaP Toxic Equivalence calculated from Benzo(a)anthracene x 0.1 + BaP x 1 + Benzo(b)fluoranthene x 0.1 + Benzo(k) fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.1 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	4, 7, 17-18
Total of Reported PAHs in Soil*	Sonication extraction, SPE cleanup, GC-MS SIM analysis.	0.3 mg/kg	4, 7, 17-18


These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Horta

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental

KB Item: 23775 Version: 2

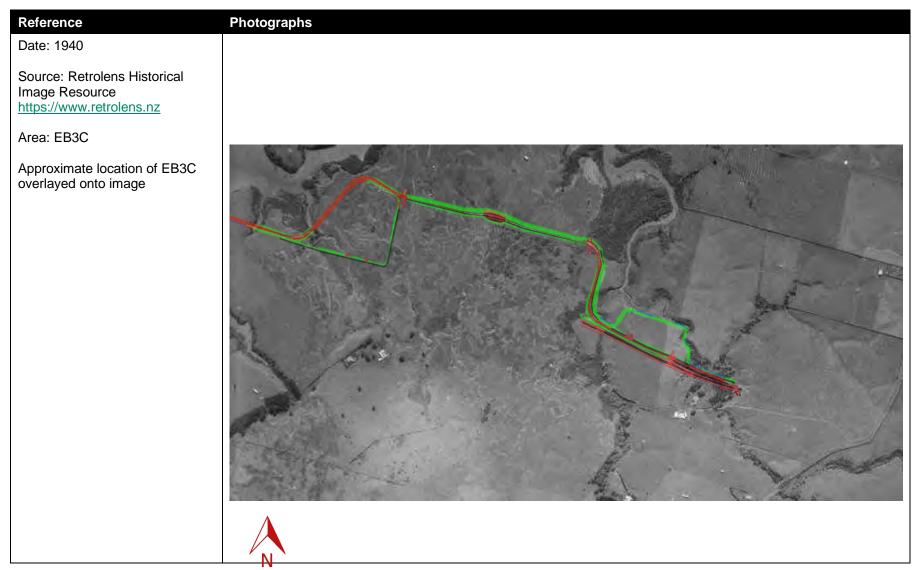
.

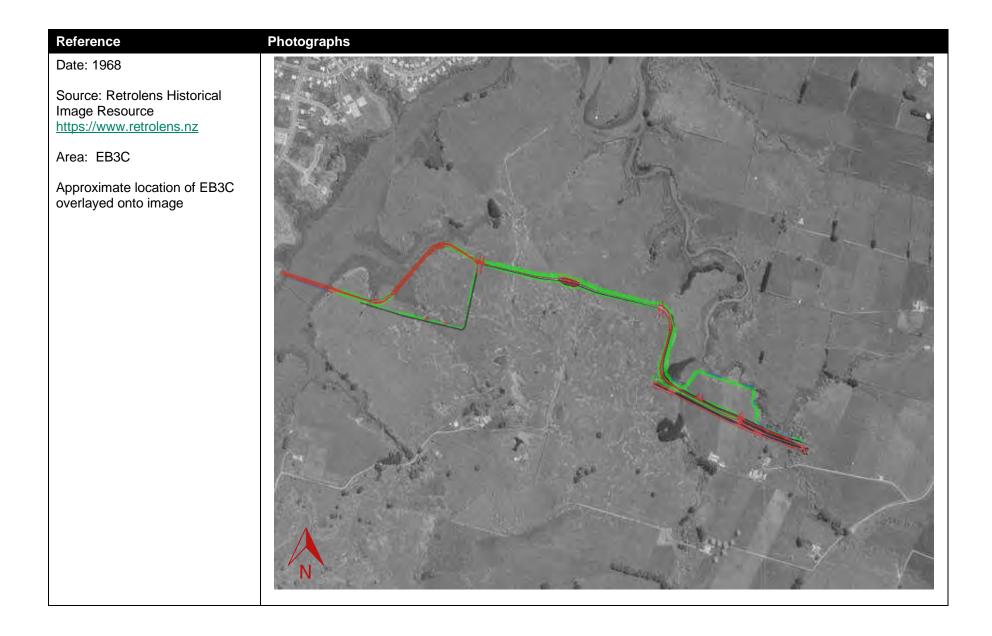
No.	Sample Name	Sample Date & Time	Sample Type	Tests Required/COWL/Initial/Final flow/Total Time
	· · · · · · · · · · · · · · · · · · ·			
_	AME_HA119_2.5-2.6	22/08/2018	E\$	
12	AME_HA120_0.4-0.5	22/08/2018	ES	Metals & PCP
13	AME_HA120_1.1-1.2	22/08/2018	ES	Hold cold
14	AME_HA120_1.9-2.0	22/08/2018	EŜ	Hold cold
15	AME_HA123_0.2-0.3	22/08/2018	ES	Metals & PCP
16	AME_HA123_0.85-0.95	22/08/2018	ES	Metals & PAH
17	AME_HA123_1.2-1.3	22/08/2018	ES	Metals & PAH
18	AME_HA123_1.5-1.6	22/08/2018	ES	Hold cold
	· · · · · · · · · · · · · · · · · · ·			
		·		
31	 			
32			<u> </u>	
33	<i>n</i>			
33	·		+ -	
34			. <u> </u>	· · · · · · · · · · · · · · · · · · ·
35	· · · · · · · · · · · · · · · · · · ·			
	<u> </u>			· · · · · · · · · · · · · · · · · · ·
37			 	
38			<u> </u>	
39				
40		<u></u>	<u> </u>	

About AECOM

AECOM is built to deliver a better world. We design, build, finance and operate infrastructure assets for governments, businesses and organizations in more than 150 countries. As a fully integrated firm, we connect knowledge and experience across our global network of experts to help clients solve their most complex challenges. From high-performance buildings and infrastructure, to resilient communities and environments, to stable and secure nations, our work is transformative, differentiated and vital. A Fortune 500 firm, AECOM had revenue of approximately \$18,2 billion during fiscal year 2017. See how we deliver what others can only imagine at aecom.com and @AECOM.

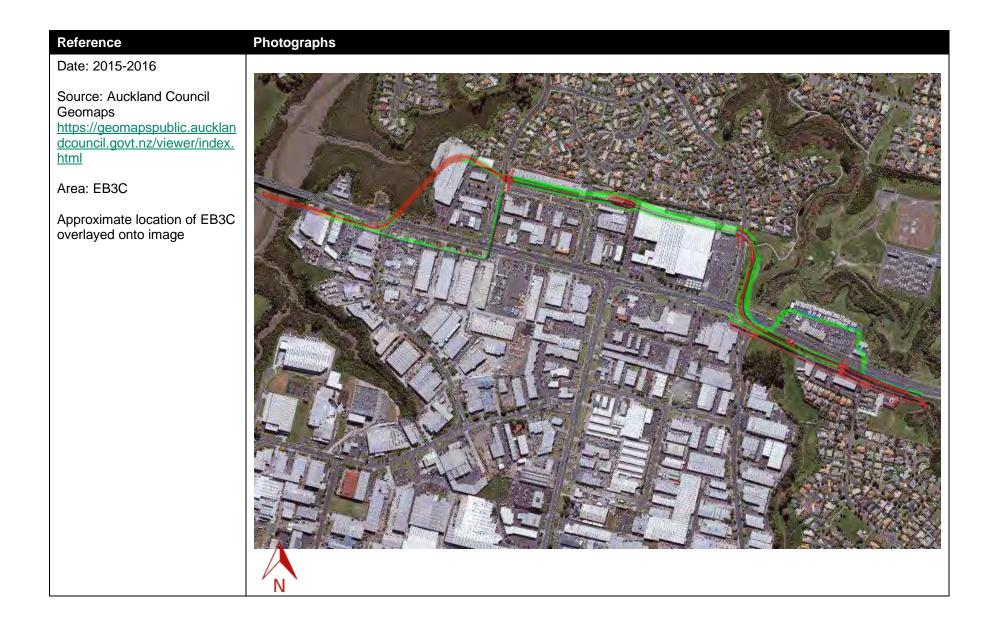
AECOM New Zealand Limited


8 Mahuhu Crescent Auckland 1010 PO Box 4241 Auckland 1140 New Zealand T +64 9 967 9200 F +64 9 967 9201

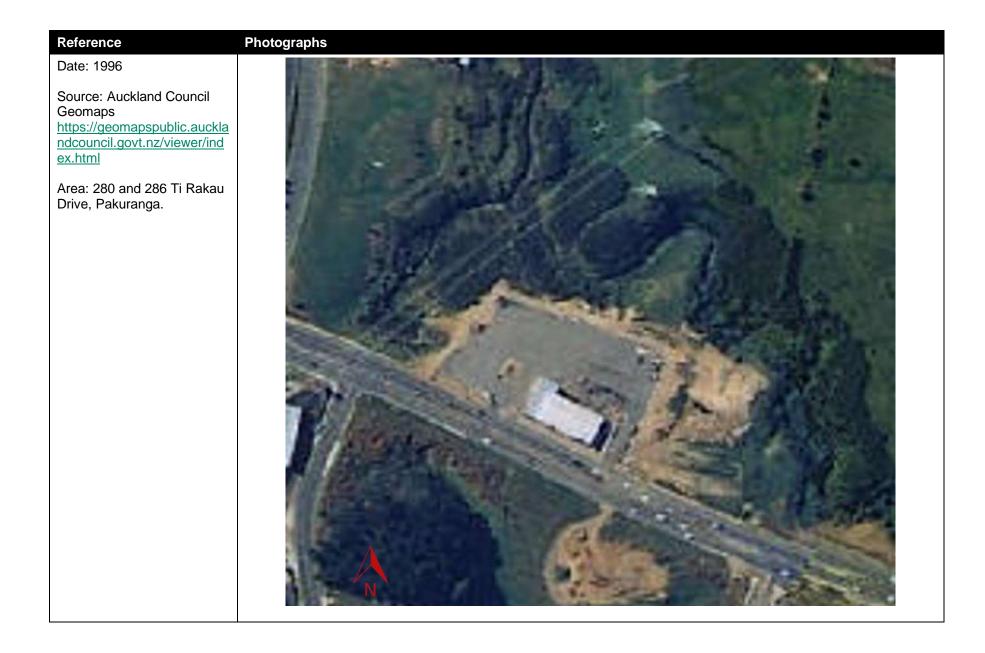

aecom.com

Appendix B: Historical Aerials

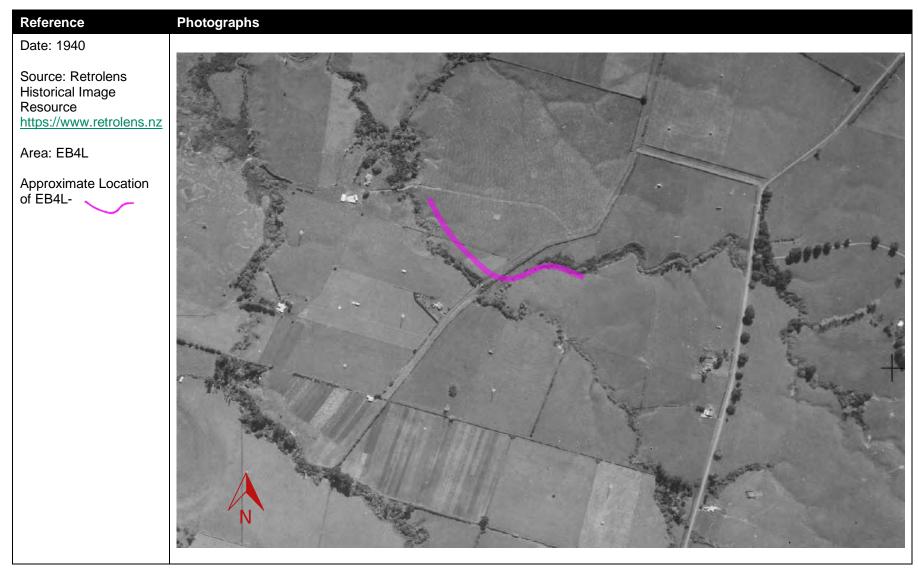
Historical Aerials - Eastern Busway – EB3C Package



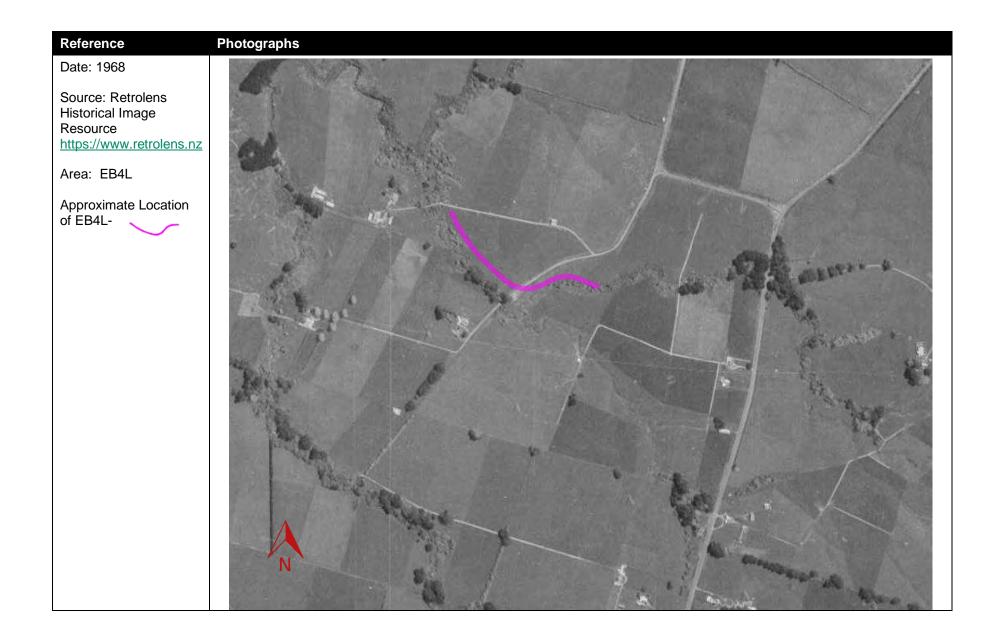
Reference Photographs Date: 1996 Source: Auckland Council Geomaps https://geomapspublic.aucklan dcouncil.govt.nz/viewer/index. html Area: EB3C Approximate location of EB3C overlayed onto image Ν


Reference Photographs Date: 2001 Source: Auckland Council Geomaps https://geomapspublic.aucklan dcouncil.govt.nz/viewer/index. html Area: EB3C Approximate location of EB3C overlayed onto image Ν

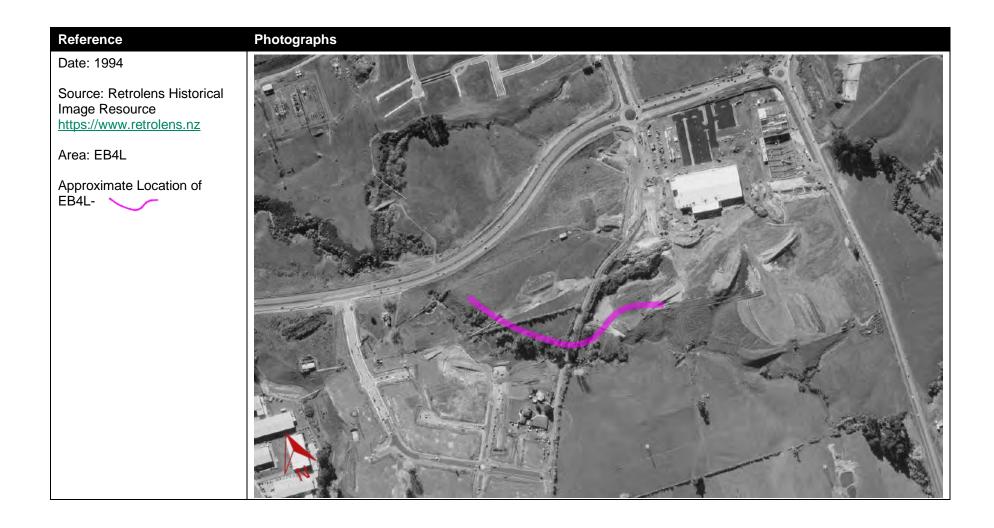
Reference Photographs Date: 2003-2004 Source: Auckland Council Geomaps https://geomapspublic.aucklan dcouncil.govt.nz/viewer/index. html Area: EB3C Approximate location of EB3C overlayed onto image Ν

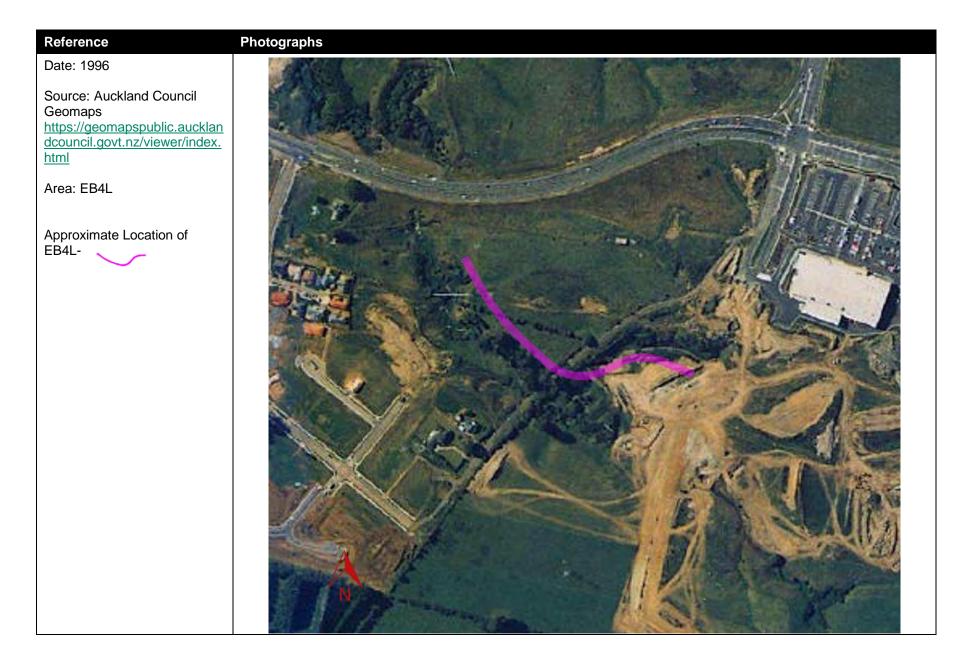

Reference Photographs Date: 2020 Source: Google Earth Pro online services Area: EB3C Approximate location of EB3C overlayed onto image Ν

Reference	Photographs
Date: 1995	
Date: 1995 Source: Retrolens Historical Image Resource https://www.retrolens.nz Area: 280 and 286 Ti Rakau Drive, Pakuranga.	

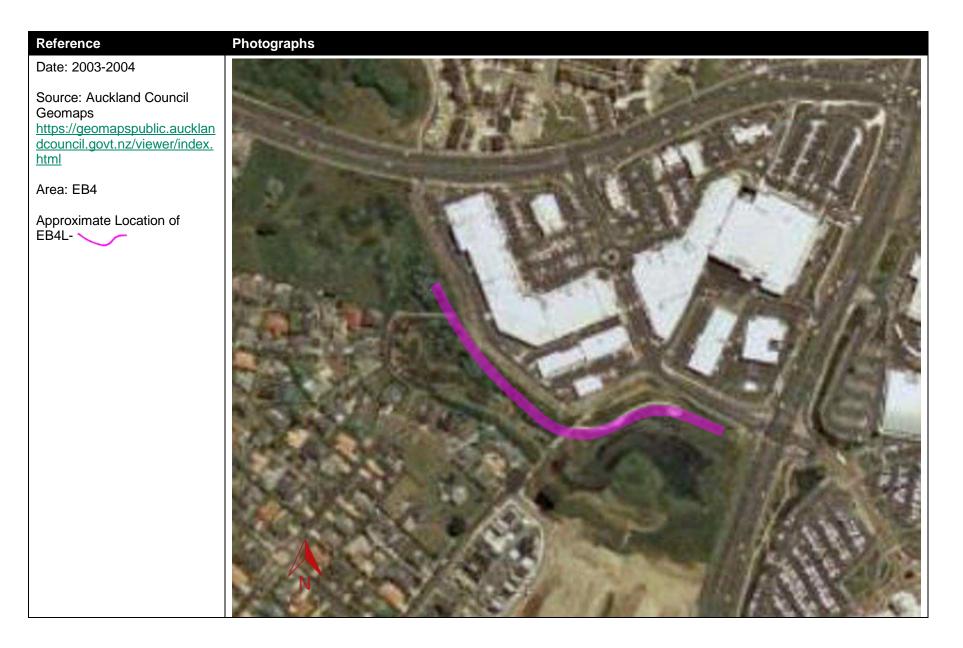


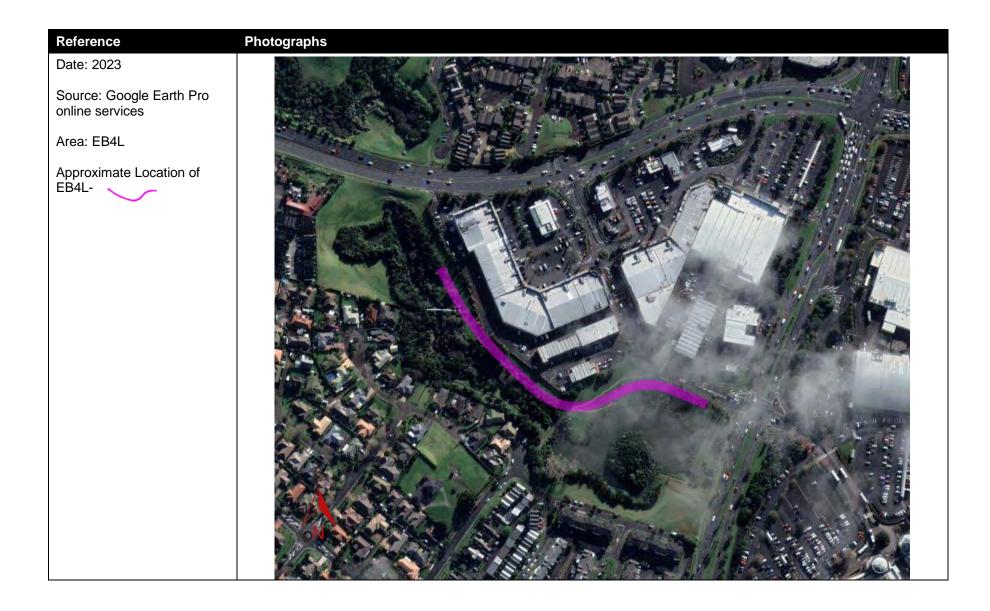
Reference	Photographs
Date: 1996	
Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html	
Area: 242 Ti Rakau Drive	





Historical Aerials - Eastern Busway – EB4L Package





Reference	Photographs
Date: 2001	
Source: Auckland Council Geomaps https://geomapspublic.aucklan dcouncil.govt.nz/viewer/index. html	
Area: EB4L	
Approximate Location of EB4L-	

Reference Photographs Date: 2015-2016 Source: Auckland Council Geomaps https://geomapspublic.aucklan dcouncil.govt.nz/viewer/index. html Area: EB4L Approximate Location of EB4L-

Reference Photographs Date: 1996 Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html Site: 550 Te Irirangi Drive (Z service station)

Reference	Photographs
Date: 2001 Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html Site: 550 Te Irirangi Drive (Z service station)	

Reference	Photographs
Date: 2006	
Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html Site: 550 Te Irirangi Drive (Z service station)	<image/>

Reference	Photographs
Date: 2017	
Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html Site: 550 Te Irirangi Drive (Z service station)	<image/>

Reference Photographs Date: 1996 Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html Sites: 21/451 Ti Rakau Drive (Pit Stop Botany Downs) and 24/451 Ti Rakau Drive (VTNZ Botany).

Reference Photographs Date: 2001 Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html Sites: 21/451 Ti Rakau Drive (Pit Stop Botany Downs) and 24/451 Ti Rakau Drive (VTNZ Botany).

Photographs Reference Date: 2006 Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html Sites: 21/451 Ti Rakau Drive (Pit Stop Botany Downs) and 24/451 Ti Rakau Drive (VTNZ Botany). HEEL

Reference Photographs Date: 2017 Source: Auckland Council Geomaps https://geomapspublic.auckla ndcouncil.govt.nz/viewer/ind ex.html Sites: 21/451 Ti Rakau Drive (Pit Stop Botany Downs) and 24/451 Ti Rakau Drive 15-4 (VTNZ Botany).

Appendix C: Auckland Council Contamination Enquiries

14 June 2021

Aecom NZ Limited PO Box 4241 AUCKLAND 1140 Attention: Kerryn Mclellan

Dear Kerryn

Site Contamination Enquiry – EB3 & EB4 Ti Rakau Drive

This letter is in response to your enquiry requesting available site contamination information within Auckland Council records for the above site. Please note this report does not constitute a site investigation report; such reports are required to be prepared by a (third-party) Suitably Qualified and Experienced Practitioner.

The following details are based on information available to the Contamination, Air & Noise Team in the Resource Consent Department. The details provided may be from former regional council information, as well as property information held by the former district/city councils. For completeness the relevant property file should also be requested to obtain all historical records and reports via 09 3010101 or online at:

https://www.aucklandcouncil.govt.nz/buying-property/order-property-report/Pages/order-property-file.aspx.

1. Hazardous Activities and Industries List (HAIL) Information

This list published by the Ministry for the Environment (MfE) comprises activities and industries that are considered likely to cause land contamination as a result of hazardous substance use, storage, and/or disposal.

Council's records indicate the following sites have possibly been subject to activities that fall within the HAIL:

- 22 Trugood Drive, East Tamaki
- 279 Ti Rakau Drive, East Tamaki
- 23 Trugood Drive, East Tamaki
- 168R Gossamer Drive, Pakuranga Heights

More information on these sites can be found within Attachment A under the 'Property Notes From SAP' tab.

Please note:

- If you are demolishing any building that may have asbestos containing materials (ACM) in it, you have obligations under the Health and Safety at Work (Asbestos) Regulations 2016 for the management and removal of asbestos, including the need to engage a Competent Asbestos Surveyor to confirm the presence or absence of any ACM.
- Paints used on external parts of properties up until the mid-1970's routinely contained lead, a poison and a persistent environmental pollutant. You are advised to ensure that soils affected by old, peeling or flaking paint are assessed in relation to the proposed use of the property, including high risk use by young children.

2. Consents and Incidents Information (200m radius of the selected site)

The Council database was searched for records of the following activities within approximately 200 metres of the site:

- Pollution Incidents (including air discharges, oil or diesel spills)
- Bores
- Contaminated site and air discharges, and industrial trade process consents
- Closed Landfills
- Air quality permitted activities

A map of relevant records can be found appended to this letter (Attachment B)

Relevant details of any pollution incidents and consents are appended to this letter (Attachment A). Please refer to the column titled 'Property Address' on the spreadsheet to aid in identifying corresponding data on the map.

While the Auckland Council has carried out the above search using its best practical endeavours, it does not warrant its completeness or accuracy and disclaims any responsibility or liability in respect of the information. If you or any other person wishes to act or to rely on this information, or make any financial commitment based upon it, it is recommended that you seek appropriate technical and/or professional advice.

If you wish to clarify anything in this letter that relates to this site, please contact <u>contaminatedsites@aucklandcouncil.govt.nz</u>. Any follow up requests for information on other sites must go through the online order process.

Should you wish to request any of the files referenced above and/or listed in the attached spreadsheet for viewing, please contact the Auckland Council Call Centre on 301 0101 and note you are requesting former Auckland Regional Council records (the records department requires three working days' notice to ensure the files will be available).

Please note Auckland Council cost recovers officer's time for all site enquiries. As such an invoice for \$128 for the time involved in this enquiry will follow shortly.

Yours Sincerely,

Contamination, Air and Noise Team Specialist Unit | Resource Consents Auckland Council

 From:
 Fran Osten <fran.osten@aucklandcouncil.govt.nz> on behalf of Contaminated Sites <ContaminatedSites@aucklandcouncil.govt.nz>

 Sent:
 Friday, 2 December 2022 2:29 pm

 To:
 Jones, Harry

 Subject:
 RE: Contam Enquiry - AECOM

Report Suspicious

This Message Is From an External Sender

This message came from outside your organization. Do not click links or open attachments unless you recognize the sender and know the content is safe

Hi Harry

Unfortunately I haven't been able to locate the report associated with the bore log at 242 Ti Rakau Drive.

Ngā mihi | Kind regards

Fran Osten | Specialist – Contaminated Land

Contamination, Air & Noise | Specialist Unit | Resource Consents Ph 09 301 0101| Mobile 021 963 590 Te Kaunihera o Tāmaki Makaurau | Auckland Council Level 6, Te Wharau o Tāmaki Auckland House, 135 Albert Street, Auckland Visit our website: www.aucklandcouncil.govt.nz

From: Jones, Harry <<u>Harry.Jones@aecom.com</u>> Sent: Wednesday, 30 November 2022 2:47 pm To: Contaminated Sites <<u>ContaminatedSites@aucklandcouncil.govt.nz</u>> Subject: RE: Contam Enquiry - AECOM

Thanks Fran, much appreciated.

The borelogs from 242 Ti Rakau Drive, it notes there was samples collected, is there a report associated with the logs or perhaps lab results?

Kind Regards Harry Jones Environmental Scientist D +64 21 348 799 harry.jones @aecom.com AECOM AECOM House 8 Mahuhu Crescent Auckland, New Zealand T +64 9 967 9200 aecom.com

Delivering a better world

From: Fran Osten <<u>fran.osten@aucklandcouncil.govt.nz</u>> On Behalf Of Contaminated Sites Sent: Wednesday, 30 November 2022 12:49 pm To: Jones, Harry <<u>Harry.Jones@aecom.com</u>> Subject: RE: Contam Enquiry - AECOM

Kia ora Harry

Please see attached information related to a UST removal associated with the bore installation at 380 East Tamaki Drive.

I have also attached the bore log for 242 East Tamaki Drive, this was completed prior to development of the site in 1996.

Let me know if you have any further questions.

Ngā mihi | Kind regards

Fran Osten | Specialist – Contaminated Land Contamination, Air & Noise | Specialist Unit | Resource Consents Ph 09 301 0101| Mobile 021 963 590 Te Kaunihera o Tāmaki Makaurau | Auckland Council Level 6, Te Wharau o Tāmaki Auckland House, 135 Albert Street, Auckland Visit our website: www.aucklandcouncil.govt.nz

From: Jones, Harry <<u>Harry.Jones@aecom.com</u>> Sent: Monday, 28 November 2022 3:57 pm To: Contaminated Sites <<u>ContaminatedSites@aucklandcouncil.govt.nz</u>> Subject: Contam Enquiry - AECOM

Hi there,

The enquiry attached stated legacy bores were installed at 242 and 380 Ti Rakau Drive. Are there any monitoring reports associated with these sites?

Kind Regards Harry Jones Environmental Scientist D +64 21 348 799 harry jones @aecom.com AECOM AECOM House 8 Mahuhu Crescent Auckland, New Zealand T +64 9 967 9200 aecom.com

Delivering a better world

CAUTION: This email message and any attachments contain information that may be confidential and may be LEGALLY PRIVILEGED. If you are not the intended recipient, any use, disclosure or copying of this message or attachments is strictly prohibited. If you have received this email message in error please notify us immediately and erase all copies of the message and attachments. We do not accept responsibility for any viruses or similar carried with our email, or any effects our email may have on the recipient computer system or network. Any views expressed in this email may be those of the individual sender and may not necessarily reflect the views of Council.

 From:
 Fran Osten <fran.osten@aucklandcouncil.govt.nz> on behalf of Contaminated Sites <ContaminatedSites@aucklandcouncil.govt.nz>

 Sent:
 Thursday, 19 January 2023 8:04 am

 To:
 Jones, Harry

 Subject:
 RE: Contaminated Land Enquiry - Botany

This Message Is From an External Sender

This message came from outside your organization. Do not click links or open attachments unless you recognize the sender and know the content is safe

Morena Harry

There are no environmental investigation reports on file for 550 Te Irirangi Drive.

Ngā mihi | Kind regards

Fran Osten | Specialist – Contaminated Land Contamination, Air & Noise | Specialist Unit | Resource Consents

Ph 09 301 0101 Mobile 021 963 590 Te Kaunihera o Tāmaki Makaurau | Auckland Council Level 6, Te Wharau o Tāmaki Auckland House, 135 Albert Street, Auckland Visit our website: www.aucklandcouncil.gov.nz

From: Jones, Harry <<u>Harry.Jones@aecom.com</u>> Sent: Wednesday, 18 January 2023 12:04 pm To: Contaminated Sites <<u>ContaminatedSites@aucklandcouncil.govt.nz</u>> Subject: Contaminated Land Enquiry - Botany

Hi there,

We completed a Contaminated Land Enquiry was completed in 2021 for the general Botany area (see attached). I have noted a Service Station Site at 550 Te Irirangi Drive (Z Botany Downs). Do the council have copies of any Environmental or compliance monitoring reports associated with the site?

Report Suspicious

Kind Regards Harry Jones Environmental Scientist D +64 21 348 799 harryjones @aecom.com AECOM AECOM House 8 Mahuhu Crescent Auckland, New Zealand T +64 9 967 9200 aecom.com

Delivering a better world

CAUTION: This email message and any attachments contain information that may be confidential and may be LEGALLY PRIVILEGED. If you are not the intended recipient, any use, disclosure or copying of this message or attachments is strictly prohibited. If you have received this email message in error please notify us immediately and erase all copies of the message and attachments. We do not accept responsibility for any viruses or similar carried with our email, or any effects our email may have on the recipient computer system or network. Any views expressed in this email may be those of the individual sender and may not necessarily reflect the views of Council.

Appendix D: Soil and Groundwater Sampling

Table D1: Eastern Busway -Soil Analytical Results Table

		San	nple Details and Analytical R	Results							Guidelin	es					
Sample Reference	EHA124_0.5	EHA124_2.1	EHA125_0.0-0.15	EHA125_0.3	EHA125_0.9												
Laboratory Sample Reference	3023442.2	3023442.4	3023452.3	3023442.6	3023442.7	NES CS ¹ (Human Health)				Oil Indus	try Guidelines: Tier 1 S	oil Acceptance C	riteria ⁷				
Date Sampled	29-Jun-22	29-Jun-22	29-Jun-22	29-Jun-22	29-Jun-22	(numan neurity)	Auckland										/
Sample Location	EH/	A124	t to the Howick and Eastern	EHA125	-	Soil Contaminan Standard ²	Background Concentrations ³ t	Auckland Permitted Activity Soil Acceptance	All Pathways Soil Acceptance Criteria - Commercial / Industrial ⁸			Soil Acceptance Criteria for the Protection of Groundwater Quality ⁸			NZBRANZ Guidelines ¹⁰		CCME Guidelines ¹¹
		Aujaven						Criteria ^{5,6}									
Sample Depth (m below ground level)	0.5	2.1	0.0-0.15	0.3	0.9	Commercial /				Contamination Depth			ontamination Dept			Commercial / Industrial Uses	Soil quality guideline for th
Sample Soil Type	Clayey SILT	CLAY	Clayey SILT	Clayey SILT	Silty CLAY SILTY CLAY	Industrial Outdoo	r Volcanic Range⁴			Surface (<1m) / 1-4	lm	Surface (<1m) / 1-4m		1	All Land Uses		protecton of
Guideline Soil Type ⁹	SANDY SILT	CLAY	SANDY SILT	SANDY SILT		Worker (Unpaved)	Voicanic Kange		SANDY SILT	CLAY	SILTY CLAY	SANDY SILT	CLAY	SILTY CLAY			environmenta health
Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(onpaved)			SANDY SILT	GLAT	SILTYCLAT	SANDT SILT	CLAT	SILTYCLAT			
Heavy Metals																	
Arsenic	7	< 2	-	< 2	< 2	70	<u>0.4 - 12</u>	100	-	-	-	-	-	-	-	-	17
Cadmium	< 0.10	< 0.10	-	< 0.10	< 0.10	1,300	<u>< 0.1 - 0.65</u>	7.5	-	-	-	-	-	-	-	-	10
Chromium	45	17	-	16	14	6300*	<u>3 - 125</u>	400	-	-	-	-	-	-	-	-	64
Copper	17	10	-	3	4	> 10,000	<u>20 - 90</u>	325	-	-	-	-	-	-	-	-	63
Lead	21	12.3	-	8.2	6.4	3,300	<u>< 1.5 - 65</u>	250	-	-	-	-	-	-	-	-	300
Nickel	37	21	-	6	6	-	<u>4 - 320</u>	105	-	-	-	-	-	-	-	-	45
Zinc	30	39	-	18	15	-	<u>54 - 1160</u>	400	-	-	-	-	-	-	-	-	250
Total Petroleum Hydrocarbons (TPH)																	
C ₇ - C ₉	-	< 20	-	< 20	-	-	-	-	(500) ^m / (500) ^m	(15,000) ^v / NA	(2,700) × /(7,300) ×	(5,200) / N/A	(590) / NA	(710) / NA	-	-	-
C ₁₀ - C ₁₄	-	< 20	-	< 20	-	-	-	-	(510) [×] /(670) [×]	(570) [×] / (2900) [×]	(560) × / (2,700) ×	(9,200) / N/A	(1,400) / NA	(1,500) / NA	-	-	-
C ₁₅ - C ₃₆	-	< 40	-	< 40	-	-	-	-	NA / NA	NA / NA	NA / NA	N/A / N/A	NA / NA	NA/NA	-	-	-
Total Hydrocarbons (C ₇ - C ₃₆)	-	< 80	-	< 80	-	-	-	-	-	-	-			-	-	-	-
Asbestos Presence / Absence	-	-	Asbestos NOT detected.	-	-	-	-	-	-	-	-			-	-	-	-
Description of Asbestos Form	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-
Asbestos in ACM as % of Total Sample (%w/w)	-	-	< 0.001	-	-	-	-	-	-	-	-			-	-	0.05	-
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample (%w/w)	-	-	< 0.001	-	-	-	-	-	-	-	-			-	0.001	-	-

Notes Highlighted Orange - exceeds BRANZ guidelines

Highlighted Ofange - exceeds BKARC gluderines Highlighted Blue - exceeds CCME guidelines <u>Underlined</u> - exceeds Auckland Background Criteria. **Bold** - exceeds AC Permitted Activity Criteria. **Red** - exceeds the NES CS.

Grey - Below laboratory limit of reporting

Italics - exceeds the Oil Industry Guidelines

Ministry for the Environment, 2011. National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health - Soil Contaminant Standard (NES CS).
 Values taken from Appendix Tables B2 and B3 of the NES CS.
 Auckland Regional Council, 2001. Technical Publication Background Concentrations of inorganic elements in soils from the Auckland Region (Auckland Background Crtieria).
 Values taken from Table 3 of Auckland Background Crtieria.

Auckland Council Unitary Plan Operative in Part, 2016 (updated 12 June 2020). Permitted Activity Soil Acceptance Criteria (AC Permitted Activity Criteria).
 Values taken from Table E30.6.1.4.1.

Values taken from Table E30.61.4.1.
 Ministry for the Environment, 1999. *Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand* (Oil Industry Guidelines).
 Values taken from Table 4.11, 4.14 and 4.20 of the Oil Industry Guidelines.
 Conservative soil category chosen for comparison with Oil Industry Guidelines Tier 1 acceptance criteria to best represent soils observed on site.
 Building Research Association of New Zealand, November 2017. New Zealand Guidelines for Assessing and Managing Asbestos in Soil (BRANZ Guidelines). Values taken from Table 5 of the BRANZ Guidelines.
 Canadian Council for Ministers of the Environment (CCME), 2002 and updates. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health.

* - Value for Chromium VI NA - indicates contaminant is not limiting as estimated health-based criterion is significantly higher than that likely to be encountered on site.

Brackets denote values exceed threshold likely to correspond to formation of residual separate phase hydrocarbons The following notes indicate the limiting pathway for each criterion:

v - volatilisation, m - maintenance/excavation worker exposure, x - PAH surrogate.

Sample Reference	EHA126_0.0-0.15	EHA126_0.3	EHA126_1.5	EHA127_0.0-0.15	EHA127_0.3	EHA127_1.1	EHA127_1.5										
Laboratory Sample Reference	3023442.9 3023442.10 3023442.12			3023452.7	3023442.14	3023442.15	3023442.16	NES CS ¹ (Human Health)			Oil Indust	ry Guidelines: Tier 1	Soil Acceptance C	Criteria ⁷			
Date Sampled	29-Jun-22	29-Jun-22	29-Jun-22	29-Jun-22	29-Jun-22	29-Jun-22	29-Jun-22	(Hullian Health)	Auckland								
Sample Location		EHA126			Soil Contaminant	Background Concentrations ³	Auckland	All Pathways Soil Acceptance Criteria -		Soil Acceptance Criteria for the Protection of Groundwater		NZBRANZ Guidelines ¹⁰		CCME Guidelines ¹¹			
			Adjacent to the	Howick and Eastern Bus D	epot			Standard ²		Permitted Activity Soil Acceptance Criteria ^{5,6}	Commercial	/Industrial ⁸	Quality ⁸				
Sample Depth (m below ground level)	0.0-0.15	0.3	1.5	0.0-0.15	0.3	1.1	1.5				Contamina	tion Depth					Soil quality guideline for th
Sample Soil Type	Clayey SILT	Clayey SILT	Silty CLAY	Clayey SILT	Clayey SILT	Silty CLAY	Silty CLAY	Commercial / Industrial Outdoor			Surface (<1m) / 1-4m		Surface (<1m) / 1-4m			Commercial / Industrial Uses	protecton of
Guideline Soil Type ⁹	SANDY SILT	SANDY SILT	SILTY CLAY	SANDY SILT	SANDY SILT	SILTY CLAY	SILTY CLAY	Worker	Volcanic Range ⁴							industrial 0365	environmental health
Unit^	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Unpaved)			SANDY SILT	SILTY CLAY	SANDY SILT	SILTY CLAY			
Heavy Metals																	
Arsenic	< 2	2	< 2	-	2	-	< 2	70	<u>0.4 - 12</u>	100	-	-	-	-	-	-	17
Cadmium	< 0.10	< 0.10	< 0.10	-	< 0.10	-	< 0.10	1,300	<u>< 0.1 - 0.65</u>	7.5	-	-	-	-	-	-	10
Chromium	15	11	10	-	15	-	12	6300*	<u>3 - 125</u>	400	-	-	-	-	-	-	64
Copper	41	7	3	-	10	-	4	> 10,000	<u>20 - 90</u>	325	-	-	-	-	-	-	63
Lead	9.2	12.8	5.2	-	12.3	-	5.3	3,300	<u>< 1.5 - 65</u>	250	-	-	-	-	-	-	300
Nickel	14	10	4	-	17	-	5	-	<u>4 - 320</u>	105	-	-	-	-	-	-	45
Zinc	23	29	11	-	26	-	15		<u>54 - 1160</u>	400	-	-	-	-	-	-	250
Total Petroleum Hydrocarbons (TPH)																	
C ₇ - C ₉	-	-	-	-	-	< 20	-	-	-	-	(500) ^m / (500) ^m	(2,700) ^v / (7,300) ^v	(5,200) / N/A	(710) / NA	-	-	-
C ₁₀ - C ₁₄	-	-	-	-	-	< 20	-	-	-	-	(510) [×] / (670) [×]	(560) [×] / (2,700) [×]	(9,200) / N/A	(1,500)/NA	-	-	-
C ₁₅ - C ₃₆	-	-	-	-	-	< 40	-	-	-	-	NA/NA	NA/NA	N/A / N/A	NA/NA	-	-	-
Total Hydrocarbons (C ₇ - C ₃₆)		-	-	-	-	< 70			-	-	-	-		-	-	-	-
Asbestos Presence / Absence	-	-	-	Asbestos NOT detected.	-		-		-	-	-	-		-	-	-	-
Description of Asbestos Form	-		-	-	-		_		-	_	-	-		-		-	
Asbestos in ACM as % of Total Sample (%w/w)	-	-	-	< 0.001	-	-		-	-	-	-	-		-	-	0.05	-
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample (%w/w)	-	-	-	< 0.001	-	-	-	-	-	-	-	-		-	0.001	-	-

Notes

Notes Highlighted Orange - exceeds BRANZ guidelines Highlighted Blue - exceeds CCME guidelines <u>Underlined</u> - exceeds Auckland Background Criteria. Bold - exceeds AC Permitted Activity Criteria. Red - exceeds the NES CS.

Grey - Below laboratory limit of reporting Italics - exceeds the Oil Industry Guidelines

Ministry for the Environment, 2011. National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health - Soil Contaminant Standard (NES CS).
 Values taken from Appendix Tables B2 and B3 of the NES CS.
 Auckland Regional Council, 2001. Technical Publication Background Concentrations of inorganic elements in soils from the Auckland Region (Auckland Background Criteria).
 Values taken from Table 3 of Auckland Background Criteria.
 Auckland Council Unitary Plan Operative in Part, 2016 (updated 12 June 2020). Permitted Activity Soil Acceptance Criteria (AC Permitted Activity Criteria).
 Values taken from Table E30.6.1.4.1.
 Ministry for the Environment, 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Oil Industry Guidelines).
 Values taken from He 4.11.4.14.4.4.4.4.0.11.0.111 (Guidelines)

Ministry for the Environment, 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Oil Industry Guidelines).
 Values taken from Table 4.11, 4.14 and 4.20 of the Oil Industry Guidelines.
 Conservative soil category chosen for comparison with Oil Industry Guidelines Tier 1 acceptance criteria to best represent soils observed on site.
 Building Research Association of New Zealand, November 2017. New Zealand Guidelines for Assessing and Managing Asbestos in Soil (BRANZ Guidelines). Values taken from Table 5 of the BRANZ Guidelines.
 Canadian Council for Ministers of the Environment (CCME), 2002 and updates. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health.

* - Value for Chromium VI

value for Chromum vi
 NA - indicates contaminant is not limiting as estimated health-based criterion is significantly higher than that likely to be encountered on site.
 Brackets denote values exceed threshold likely to correspond to formation of residual separate phase hydrocarbons.
 The following notes indicate the limiting pathway for each criterion:
 v - volatilisation, s - soil ingestion, d - dermal exposure, p - produce ingestion, m - maintenance/excavation worker exposure, x – PAH surrogate.

Table D2: Eastern Busways - Howick Bus Depot Groundwater Analytical Results

DH322	Duplicate				
DH322	DUPA	ANZG'	Oil Industry Guidelines ³		
3023440.1	3023440.2	80% Protection ²	Commercial/Industrial (Silty Clay)		
29-Jun-22	29-Jun-22	Freshwater	2 - 4 m		
7.4	7.4	-	-		
0.0023	0.0024	<u>0.14</u> ⁵	-		
< 0.00005	< 0.00005	<u>0.0008</u>	-		
< 0.0005	< 0.0005	<u>0.04</u> ⁶	-		
< 0.0005	< 0.0005	<u>0.0025</u>	-		
< 0.00010	< 0.00010	<u>0.0094</u>	-		
0.0034	0.0033	<u>0.017</u>	-		
0.0149	0.0161	<u>0.031</u>	-		
< 0.10	< 0.10	-	S		
< 0.2	< 0.2	-	S		
< 0.4	< 0.4	-	S		
< 0.7	< 0.7	-	•		
< 0.00010	< 0.00010	<u>0.00004</u>			
	DH322 3023440.1 29-Jun-22 7.4 0.0023 < 0.00005 < 0.00005 < 0.00005 < 0.00010 0.0034 0.0149 < 0.10 < 0.2 < 0.4 < 0.7	DH322 DUPA 3023440.1 3023440.2 29-Jun-22 29-Jun-22 7.4 7.4 7.4 7.4 0.0023 0.0024 < 0.0005	DH322 DUPA ANZG ¹ 3023440.1 3023440.2 80% Protection ² 29-Jun-22 29-Jun-22 Freshwater 7.4 7.4 - 7.4 7.4 - 0.0023 0.0024 0.14 ⁵ < 0.0005		

Notes

All units measured in mg/L unless otherwise indicated.

Grey text represents values below the laboratory limit of reporting (LOR). Underlined - exceeds ANZG

Bold - exceeds the Oil Industry Guidelines

National Water Quality Mangement Strategy, 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG).
 Values taken from the toxicant Default Guideline Value Database: https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/search
 Values taken from Table 5.10 MFE Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand 1999 (Oil Industry Guidelines)

5. Guideline for arsenic V.

6. Guideline value for chromium VI.

No criteria or not analysed
 *Limit for C₇ - C₁₄ range hydrocarbons
 **All remaining OCPs were below the laboratory limit of reporting (LOR)
 S= Calcualted water criteria exceeds solubility limit for pure compound in water.

TERMINOLOGY AND SYMBOLS

Drilling / Investigation Methods

CFHSA CFSSA DC DCP HA HQWL HWOB NQ3 NQWL OB OB70 PERC PS PQ3 PQWL RC DHH SPT SPERC PT VAC EX WASH	 Continuous Flight Hollow Stem Auger. Continuous Flight Solid Stem Auger. Dynamic Coring (eg Terrier Rig). Dynamic Cone Penetrometer. Hand Auger. HQ Triple Tube. HQ Wire Line. NQ Wire Line. NQ Wire Line. NQ Wire Line. NQ Wire Line. Yomm diameter Open Barrel. Percussion. Piston Sample. PQ Wire Line. Reverse Circulation Down Hole Hammer. Standard Penetration Test. Sonic Percussion. Push Tube Sample Vacuum Excavation. Wash Drilling.
--	--

Installation & Backfill

Standpipe	Grout
Slotted Standpipe	Cement
Collapse/Cuttings	Gravel Pack Filter
Bentonite	Sand Pack Filter
Inclinometer	Gravel Backfill

Rock Descriptions

Relative Strength

		USC (MF
ES	 Extremely strong 	> 250`
VS	- Very Strong	100 - 250
S	- Strong	50 - 100
MS	- Moderately Strong	20 - 50
W	- Weak	5 - 20
VW	- Very Weak	1 - 5
EW	- Extremely Weak	< 1

Pa) 0

Rock Defect Abbreviations

Weathering

Infill Thickness

Vn = Veneer (<0.5mm)

C = Completely Infilled

Cg = Coating P = Partially infilled

Sn = Stained

Infill Colour

bl = Blue bn = Brown

bk = Black

- UW **Unweathered**
- Slightly Weathered Moderately Weathered SW
- MW HW - Highly Weathered
- CW - Completely Weathered

Infill Material

Cc = Calcite

Py = Pyrite

S = Sand

Slt = Silt

Qtz = Quartz

Fe = Iron Oxide

Mn = Manganese NF = No Infill

CI = Clay

Calc = Calcareous

Cb = Carbonaceous

Test Results

- SPT "N" value; uncorrected blow count for 300 mm penetration # /# / # / # / # / # blows per 75 mm penetration
- ss Standard Penetration Test split spoon sc - Standard Penetrattion Test - solid cone (no sample recovery) SUOW - Sunk Under Own Weight

Vane Shear Strength Tests

/ # Vane shear strength test results given as peak / remoulded shear strengths (kPa). Test as per NZGS Guideline, 2001.

[#] = Vane test performed on core recovered prior to extrusion from core barrel. = Vane test performed on excavated material of suitable size.

UTP - Unable to penetrate.

Unit/Geological Boundary Lines

Known Inferred/Unknown

Groundwater Records

Ŷ Water Level (During Drilling) Water Inflow/Seep \triangleright Water Outflow <Complete Water Loss **Regain Circulation**

Samples

- Thin Wall Push Sample PS
 - Piston Sample
 - Undisturbed - Disturbed (Core)
 - Disturbed (Pit)

Fluid level (2.0) measurement during drilling

PT

U

D B

Soil Descriptions

<u>Consiste</u> Cohesiv	
Very Soft	Su (kPa) < 12
Soft	12 - 25
Firm	25 - 50
Stiff	50 - 100
Very Stiff	100 - 200
Hard	200 - 500

Relative Density Non-cohesive soils SPT "N" Value

(uncorrected) < 4 4 - 10 Very Loose Medium Dense 10 - 30 30 - 50 Very Dense > 50

Graphic Log (typical symbols)

Loose

Dense

e en e en en Peat Mudstone Clay Siltstone Silt Sandstone Basalt Sand Gravel / Cobbles No recovery Welded Tuff

Core Measurements

TCR - Total Core Recovery RQD - Rock Quality Designation

T = Tight (Nil) VN = Very Narrow (>0-2mm) gn = Green gy = Grey N = Narrow (2-6mm)or = Orange MN = Moderately Narrow (6-20mm) MW = Moderately Wide (20-60mm) pk = Pink rd = Red W = Wide (60-200mm) wh = White VW = Very Wide (>200mm) ye = Yellow

Defect Roughness

Defect Type

J = Joint SZ = Shear Zone

Ve = Vein

CZ = Crush Žone

DB = Drilling Break

FZ = Fracture Zone

HJ = Healed Joint

Defect Aperture

BP = Bedding Plane Defect

PI = Planar St = Stepped Ud = Undulating Ro = Rough Sm = Smooth Slk = Slickensided \\ = Parallel Po = Polished

Soil and rock descriptions generally as in "Guidelines for the Field Description of Soil and Rock for Engineering Purposes" by the NZ Geotechnical Society Inc, December 2005.

EB KEY SHEET 210922 1700 MILL RD MASTER.GPJ BASE.GDT 22/09/21

2021

LOG OF DRILLHOLE

Client Auckland Transport

Project

ect Eastern Busway

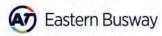
Project number 60644113

HOLE IDENTIFICATION

Co-ordinates 412397.84mE 794695.97mN

DH322

Ρ


Orientation -90° Elevation 6.44m

Location Reserve: 23R Kenwick Place

Feature Retaining Wall

	BEOLOGICAL DESCRIPTION Weathering, Colour, Fabric, ROCK NAME. Strength, Discontinuities, Lithological Features (bedding, foliation, mineralogy, cement, etc).	Test Shear Vane/ SPT	Records SPT N Values 0 - 50	Drilling Method Casing remarks	Core Loss/Lift	^S Relative ^W Strength	>	Depth	Graphic Log	TCR [RQD] (%)	500) Spacing of 50 Matural 10 Defects		SOIL PROPERTIES Subordinate MAJOR minor; colour, structure. Str grading, bedding, plasticity, sensitivity, major fra fraction description, minor fraction description, a information, etc DEFECT DESCRIPTION (Joints, Bedding Seams, Shatter, Shear Schistosity, Attitude, Spacing, continuity,	tion description, subordinat dditional structures, addition	nstrumentation
	0.0m: TOPSOIL. 0.2m: ALLUV/IUM comprising clay, sand, silt, organic clay and peat.	-		НА				- - - - - - - - - - - - - - - - - - -		100			0.0m: Topsoil. 0.2m: Silty fine to medium SAND; w dense, dry, well graded. (Pumice).	hitish grey. Very	
		ss 0,0,0, 1,0,1 N=2		SPT				- - - - - 2	x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _	100		:	 3m: Silty CLAY with some fine to r brownish grey with light grey and or staining/mottling. Firm, moist, high p 	ange	
		ss		HQ3				- - - - - - - - - - - - - - - - - - -		100					
		1,2,2, 3,2,3 N=10		SPT					\$ *	100			3.35m: Silty CLAY; bluish grey. Stiff, plasticity.	moist, high	
				HQ3				- 4	F _ X _ X F _ X _ X	100					
TAURANGA GROUP		ss 0,1,1, 1,1,1 N=4		SPT				- - - - - 5		100					
TAURAN				HQ3				- - - -		100					
		ss 0,0,0, 0,0,1 N=1		SPT				- 6 	* *	100			6.35m: Spongy PEAT; black. Firm, ı plasticity.	moist, high	
				HQ3			111	- - - - - - - -		100			6.55m: Organic CLAY with decomp flecks; dark brown. Soft, moist, high 7.05m: Silty fine to medium SAND v and trace organics; brown. Medium	plasticity. <i>v</i> ith some clay	
		ss 0,0,1, 0,1,2 N=4		SPT				- 8	F _ X _ X _ X _ X _ X _ X _ X _ X _ X _	100			well graded. 7.35m: Becomes bluish grey. 7.5m: Silty CLAY with trace fine mic and organics; bluish grey. Stiff, mois plasticity.		
				HQ3					8 _ X _ X _ X _ X _ X _ X _ X _ X _ X _	100			8.7m: Becomes firm.		
/ F		ss 0,0,0, 0,0,0 N=0 SUOW		SPT				- 9 		100					
								-	<u></u>				9.7 to 10.35m: With some fine to media	um sand.	000
D 2' 24	For explanation of symbols and obs FLUID DEPTHS AND DRILLIN tate Time Drilled Depth 1/01/2022 17:15 19.50 1/01/2022 08:30 19.50	NG PR Casing	OGRESS Depth F 13.4 13.4	S (m) Fluid D 3.4 2		VS-1 S-3 MS-1 W-1 VW-1	Very stro Strong	ely strong ak	UW - SW - MW - HW -	WEATHE Jnweathe Slightly w Moderatel Highly we Completel	red eathered y weathe athered	ered	Date logged 24/01/2022 Logged SK Checked GP	Driller McMillan Started 20/01/2022 Finished	
24	4/01/2022 11:45 27.00		13.4	1.6		50 i Hor	izont	tandp al / Ve	rtical S	urvey l	Datum	ns:	ed on completion. NZGD2000 - Mount Eden	24/01/2022 Drill Rig N119	
	Hand Held Shear Vane								aland V					Core Boxes	9
	vane shear strength per NZGS gui	deline												Page 1 of	8

2021 EB DRILLHOLE LOG 2022-04-12 SBS MASTER.GPJ BASE.GDT 12/04/22

LOG OF DRILLHOLE

Auckland Transport Client

HOLE IDENTIFICATION

Co-ordinates 412397.84mE 794695.97mN

DH322

Ρ

Instrumentation

Orientation -90° Elevation 6.44m

Pr	oject Eastern	n Busv	vay									_ocation Reserve: 23R Kenwick Place	
Pr	oject number 606441	13										Feature Retaining Wall	
GEOLOGICAL DESCRIPTION Weathering, Colour, Fabric, ROCK NAME. Strength, Discontinuities, Lithological Features (bedding, foliation, mineralogy, cement, etc).		Test Records Shear SPT Vane/ N Values SPT 0-50			Drilling Method Casing remarks Core Loss/Lift		www.Weathering Depth		Graphic Log	TCR [RQD] (%)	500 Spacing of 100 3 Natural 10 Cefects	DEFECT DESCRIPTION	
				ноз 				- - -	* *× *×	100		7.5m: Silty CLAY with trace fine micaceous sand and organics; bluish grey. Stiff, moist, high plasticity. <i>(continued)</i> 10.35 to 10.4m: Fine to medium SAND with some	
		ss 0,4,5, 3,3,2 N=13		SPT				-	× · · · × · · · · ×	100		organics. 10.6m: Silty fine to medium SAND with trace	
TAURANGA GROUP				HQ3	- 			11 		100		organics; grey. Medium dense, moist, well graded.	
TAUF		ss 1,1,2, 2,2,3 N=9		SPT				- 12 		100			
	13.09m; Highly weathered,	_		HQ3				- - - - - 13	× · · × · · × · · × · · × · · × · · × · · × · · × · · × · · × · · × · · × · · × · · × · · × ·	100		12.8m: Becomes very dense. 13.09m: Clayey SILT; grey. Very stiff.	
	grey, SILTŠTONE. Extremely weak.	ss 2,2,4, 3,5,4 N=16		HWT SPT				- - - - - - - - - - -	× × × × × * * * × × * * * × × * * × × × * × × × ×	100		13.09 to 13.16m: Sitly fine SAND. 13.26 to 13.31m: Sitly fine SAND. 13.5m: 114mm diameter HWT casing to 13.5m.	
				 HQ3 				- '' - - - - -	× × × × × × × × × × × × × × × × × × ×	100		14.25 to 14.32m: Silty fine to medium SAND.	
Z	14.9m: Moderately weathered, fine to coarse, grey SANDSTONE. Extremely weak.	ss 5,9,16, 14,13,7 for 40mm N>50		SPT	- 			- 15 - - -	× × × ×	100		14.9m: Silty fine to coarse SAND; grey. Very dense.	
EAST COAST BAYS FORMATION	15.7m: Highly weathered, grey, SILTSTONE. Extremely weak.			 HQ3 				- - - - - 16 -	x · · · x · · · · · · · · · · · · · · ·	100		15.7m: Clayey SILT; grey. Very stiff to hard.	
ST BAY		ss 2,3,4, 5,7,10 N=26		SPT				-		100			
EAST COA	16.9m: Highly weathered, grey, fine to coarse SANDSTONE. Extremely weak.			НQ3				- 17 		100		16.9m: Silty fine to coarse SAND; grey. Medium dense.	

100

100

99

WEATHERING

UW - Unweathered SW - Slightly weathered MW - Moderately weathered HW - Highly weathered CW - Completely weathered

50 mm standpipe piezometer installed on completion.

2000 / New Zealand Vertical Datum 2016

18

19

1

1

RELATIVE STRENGTH

VS - Very strong S - Strong MS - Moderately strong W - Weak VW - Very weak EW - Extremely weak

Remarks

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

|||||

1111

Horizontal / Vertical Survey Datums: NZGD2000 - Mount Eden

17.7m: Clayey SILT; grey. Very stiff to hard.

19.6 to 19.7m: Fine to medium SAND.

Date logged 24/01/2022

Logged

Checked

SK

GP

Driller

Started

Drill Rig

N119

Page 2

Core Boxes

McMillan

20/01/2022 Finished

24/01/2022

|||||

1111

||||||

1 1 1 1

1111

111

111

4,6,8, 9,11,11 N=39

6,8,10, 12,13,15

for 70mm

Drilled Depth Casing Depth Fluid Depth

For explanation of symbols and observations, see key sheet

FLUID DEPTHS AND DRILLING PROGRESS (m)

SPT

HQ3

SPT

111

111

111

111

111

111

Date Time

Hand Held Shear Vane

vane shear strength per NZGS guideline

indistinct.

17.7m: Moderately

weathered, grey, SILTSTONE. Extremely

weak. Very thickly bedded,

9

of

LOG OF DRILLHOLE

Client Auckland Transport

Project

Eastern Busway

HOLE IDENTIFICATION

Co-ordinates 412397.84mE 794695.97mN

DH322

Ρ

• .

Orientation -90° Elevation 6.44m

Reserve: 23R Kenwick Place Location

GEO	DLOGICAL		pc	μ		_				of "		OPERTIES		tion
DES		Test Records Wetho			Relative Strength Rock Weathering		Depth	Graphic Log	TCR	Spacing o Natural Defects	grading, beddin fraction descript information, etc	JOR minor; colour, structure. Stre g, plasticity, sensitivity, major frac tion, minor fraction description, ad	ength, moisture condition, tion description, subordinat Iditional structures, addition	ा स्थित Instrumentation
Strength, Discontinuities, Lithological Features (bedding, foliation, mineralogy, cement, etc).		Shear SPT Vane/ N Values SPT 0 - 50	Drilling	Drilling Method Casing remarks		Meat Weat		Graph	[RQD] (%)	(mm)	Joints, Bedding Seams, Shatter, Shear and Crush Zones, Foliation, Schistosity, Attitude, Spacing, continuity, roughness, infilling, etc.)		Instru	
	7.7m: Moderately veathered, grey, SILTSTONE. Extremely veak. Very thickly bedded, ndistinct. <i>(continued)</i>	N>50	HQ3				- - - - - -	× × × × × × × × × × × × × × × × × × ×	100			'SILT; grey. Very stiff to har 7m: Fine to medium SAND.		
		ss 6,8,11, 11,12,14 N=48	SPT	_ 			21	× ×	100					
			HQ3				- - - - - 22	× × × × × × × × × × × × × × × × × × ×	100					
VIION	2.45m: MW, grey, fine to coarse SANDSTONE. EW.	ss 14,12,15, 20,15	SPT					× · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · · × · · · · × · · · × · · · × · · · · × · · · × · · · · × · · · · × · · · · × · · · · · × · · · · × · · · · × · · · · · × · · · · · × · · · · · × · · · · · · · · × ·	100		22.45m: Silty dense.	y fine to coarse SAND; g	grey. Very	• • • • • •
YS FOF	22.85m: Moderately veathered, grey, SILTSTONE. Extremely veak. Moderately thickly vedded, indistinct.	- for 45mm N>50 	HQ3				- 23 	x x x x x x x x x x x x x x x x x x x	57		22.85m: Cla	yey SILT; grey. Hard.		
EAST COA		ss 8,10,14, 13,15,8 for 50mm	SPT				24	× · · · · · · · · · · · · · · · · · · ·	100					
2	24.8m: Moderately veathered, grey, silty fine to coarse SANDSTONE. Extremely weak.	N>50 	HQ3				25		87		24.8m: Silty	fine to coarse SAND; gr	ey. Very dense.	
	25.5m: Moderately veathered, grey, SILTSTONE. Extremely veak. Moderately thickly	ss 9,11,12, 16,17,5 for 25mm N>50	SPT				26	× × × × × × × × × × × × × × × × × × ×	100		25.5 to 2	ey SILT; grey. Hard. 27.0m: Moderately widely spa planar or irregular.	aced drilling	• • • • • • • • •
t	edded, indistinct.		HQ3				- - - - - - - -	× × × × × × × × × × × × × × × × × × ×	100					
						-441 111 111 111 111	- 27 - - - - - - -				Depth Criteria Achieved			
							- 28 - - - - -							
							29 29 							
	explanation of symbols and obs								WEATHI					
FLU	ID DEPTHS AND DRILLIN Time Drilled Depth	NG PROGRES	S (m)		VS-V S-S	'ery stro trong loderat		UW - SW - MW -	Unweathe Slightly w	red eathered y weather	Logged		Driller McMillan Started	

VS - Very strong S - Strong MS - Moderately strong W - Weak VW - Very weak EW - Extremely weak

Remarks

UW - Unweathered SW - Slightly weathered MW - Moderately weathered HW - Highly weathered CW - Completely weathered

50 mm standpipe piezometer installed on completion.

2000 / New Zealand Vertical Datum 2016

Horizontal / Vertical Survey Datums: NZGD2000 - Mount Eden

GP

Drill Rig

N119

Page 3

Core Boxes

20/01/2022 Finished

24/01/2022

Checked

EB DRILLHOLE LOG 2022-04-12 SBS MASTER.GPJ BASE.GDT 12/04/22 2021

Hand Held Shear Vane

vane shear strength per NZGS guideline

9

of

2021 EB DRILLHOLE LOG 2022-04-12 SBS MASTER.GPJ BASE.GDT 12/04/22


Page 4 of 8

Date Drilled 20/01/2022 to 24/01/2022 - Date Photographed: 21/01/2022

2021 EB DRILLHOLE LOG 2022-04-12 SBS MASTER GPJ BASE GDT 12/04/22


Page 5 of 8

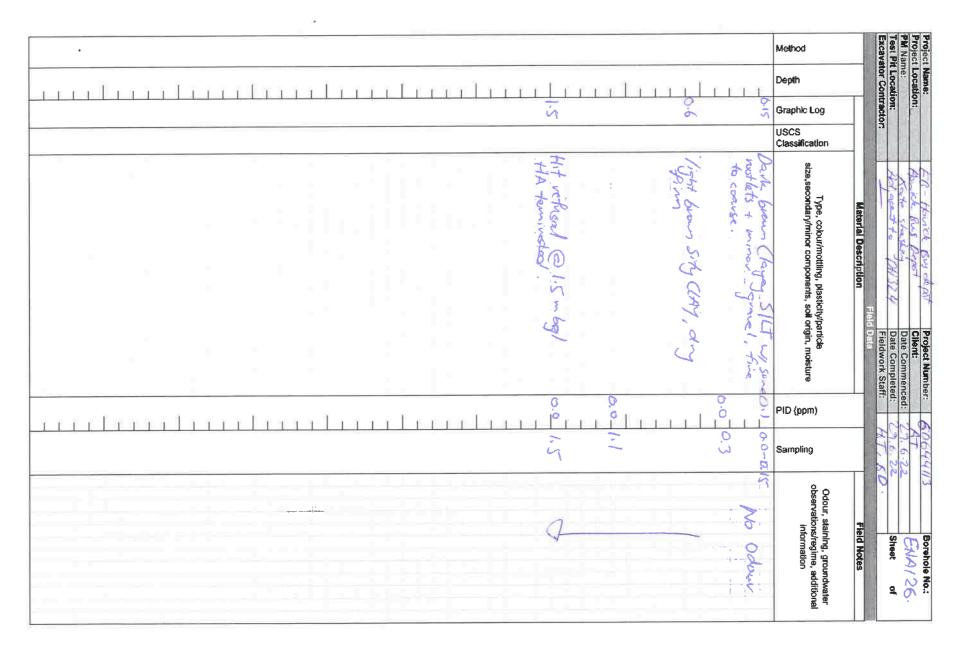
Date Drilled 20/01/2022 to 24/01/2022 - Date Photographed: 21/01/2022

Box: 8 of 9 - Depth: 21.60m to 24.85m of 27.00m Date Drilled 20/01/2022 to 24/01/2022 - Date Photographed: 24/01/2022

-	
ĥi.	
Q.	
2	
S	

ANZ Test Pht Field Log Hand ang

	Method	Project Name: Project Location: PM Name: Test Pit Location: Excevator Contractor:
	Depth	Name: Location t Locati t Locati tor Con
4 4 4	Graphic Log	NI: OIN: tracto
	USCS Classification	
Dark brown Clayery SILT or some wasters Dark gray CUAY, SHA terminated 2 2.1 m b51.	j, plastic	FBA-Fres Dept Project Number How red Guest Client: Client: How red Guest Date Commenced: At prost JOH322 Date Completed: Field Data Field Data
	PID (ppm)	f: xed:
1. In 1. In	Sampling	064411 AT 29.6.
	Field Notes Odour, staining, groundwater observations/regime, additional information	3 Borehole No.: 6//A124 2 Sheet of


Page 1 of 1

ž

Mathematic Without Class and class Project function Without Class and class Class and class Dopph Class and class		Method Project L	ANZ Test P
Classification Registive from Type, coolumnonting, planticity Final Dependent of the second data with the		Depth Control	it Flei
Classification Harring Description Registive field Type, coolumnoaling phasedony primeror components sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most response or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most response or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most response or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most responsed or the sell organ, most response organ, most response organ, most response organ, most response organ, most response organ, most response organ, most response organ, most response organ, most response organ, most r		USCS	d Log
Image: Control of the common sector of the common secto			
Image: section of the section of t	Sity CLAY, SILT, W	Konce Cilent: Adject Stete Comm Adject Field Comm Adject Field Data Material Description Field Data Type, colour/mottling, plasticity/particle size,secondary/minor components, soil origin, moisture	FRA- Rus Deast . Project Num
		PID (ppm)	ber
Eorehole No.: End Notes Field Notes Field Notes Mormations/regime, additional information		Sampling	1414290
	S	202	Porehole No.:

Test Pit Field Log Revision September 16, 2016

Page 1 of 1

D.	
Ū1	
O.	
0	
2	

anz Tast Pit Field Log Manad Auger

		Method	Project Name: Project Location: PM Name: Test Pit Location: Excavator Contractor:
		Depth	Name: Locatione: Locatione: Locatione:
	5.0 S. 0	Graphic Log	on: tractor
		USCS Classification	
HA Refusal @ (15 m 65) HA Termination	Unik brown Chayey SILT & some wootlets Dark grey Sitty CUNY. Dark gray/ Orange Sitty CUNY any fight Orange Sitty CUNY	Material Description Type, colour/mottling, plasticity/particle size,secondary/minor components, soil origin, moisture	Eth Project Number: Upprice Buy Upport Upprice Buy Upport Upprice Upport Upprice Upport Upport Date Completed: Upprice Upport Upport U
		PID (ppm)	
ŝ	6.3	Sampling	24.6.2 7. 6.2 7. 50
À.	No Bar	Field Notes Odour, staining, groundwater observations/regime, additional information	III3 Borehole No.: 2 CHIAI 2.7 72 Sheet of

Test Pit Field Log Revision September 16, 2016

Page 1 of 1

CHA127 6.3 CHA127 1.1 ENA127 1.5	EHA 126 - 0.5 EHA126 0.0-0.15 EHA 126 0.5 EHA126 0.3 EHA 126 1.5 EHA126 0.3 EHA 126 1.5 EHA126 1.1 EHA 126 1.5 EHA126 1.5 EHA 126 1.5 EHA126 1.5 EHA 126 1.5 EHA126 1.5	5 . 0		Date: 29/1/22 Project No.: 60644 113 Grid Reference: Sample No. Sample Location Depth (m)	16;#Australla New Zealand a541b326-6e42-45fc-a7d5-d797f3cb72ce Site Contamination Sample Register
	0.1 Davk brown . ch 0.0 Same as 0.0 light brown s 0.0 Same as 1	15. 0.1 Dark been clary SILT is som rodlets. 0.1 Seene as EHA125_0.0-6.3. 0.0 light been sitt, CLAY day, \$55 fim	2.15 a.o Davk burn Clayer SILT of Some Rootherts 0.0 lightbourn sith CLAY Dry Firm 0.0 lightbourn sith CLAY Dry Firm 0.0 lightbourn sith CLAY Dry Firm 0.0 Same as EHA124-11	-	d5-d797f3cb72ce
Not working	Merenel Hit voluse /		Comments	nnel: HJ + 50	AECOM

ł

Site Contamination Sample Register (Q4AN(EV)-336-FM16) Revision 1 June 20, 2011

,

•

5.1

												04322	Well ID	Instrument Model:	Project Number:
												8.36 ~	Time		20644113
												1	Depth to product		
												3.134	DTW (mbgi)		Recorded by:
												7.10.	DTB (mbgl)	Weather conditions:	TRA
												Good	Well condition	Ins: Oceant	Date:
												P10-0.0 pp-	Comments		9/62

AECOM

Sheet **Site Contamination Analysis Water Level Data**

Data Q4AN(EV)-336-FM9

æ

-

.

ļ,

1000

T 0508 HILL LAB (44 555 22) Т

+64 7 858 2000

E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 3

Certificate of Analysis

Client:	AECOM New Zealand Limit	ted		Lab No:	3023440	SPv1			
Contact:	Harry Jones			Date Received:	29-Jun-2022				
	C/- AECOM New Zealand L	imited		Date Reported:	05-Jul-2022				
	PO Box 4241			Quote No:	118522				
	Shortland Street			Order No:	60644113/1.1				
	Auckland 1140			Client Reference:	EBA				
				Submitted By:	Kate Shaskey				
Sample Ty	Sample Type: Aqueous								
	Sample Name	DH333							

\$	Sample Name:	DH322 29-Jun-2022	DUPA 29-Jun-2022			
	Lab Number:	3023440.1	3023440.2			
Individual Tests						
pН	pH Units	7.4	7.4	-	-	-
Chloride	g/m³	144	144	-	-	-
Sulphate	g/m³	6.0	6.0	-	-	-
Heavy metals, dissolved, trace	As,Cd,Cr,Cu,Ni,Pl	b,Zn			1	1
Dissolved Arsenic	g/m³	0.0023	0.0024	-	-	-
Dissolved Cadmium	g/m³	< 0.00005	< 0.00005	-	-	-
Dissolved Chromium	g/m³	< 0.0005	< 0.0005	-	-	-
Dissolved Copper	g/m³	< 0.0005	< 0.0005	-	-	-
Dissolved Lead	g/m³	< 0.00010	< 0.00010	-	-	-
Dissolved Nickel	g/m³	0.0034	0.0033	-	-	-
Dissolved Zinc	g/m³	0.0149	0.0161	-	-	-
Nutrient Profile					1	1
Total Ammoniacal-N	g/m³	0.82	0.82	-	-	-
Nitrite-N	g/m ³	0.004	0.004	-	-	-
Nitrate-N	g/m ³	0.023	0.018	-	-	-
Nitrate-N + Nitrite-N	g/m ³	0.027	0.022	-	-	-
Dissolved Reactive Phosphoru	s g/m³	< 0.004	0.006	-	-	-
Organochlorine Pesticides Scr	eening in Water, B	y Liq/Liq				
Aldrin	g/m ³	< 0.00010	< 0.00010	-	-	-
alpha-BHC	g/m ³	< 0.0002	< 0.0002	-	-	-
beta-BHC	g/m ³	< 0.0002	< 0.0002	-	-	-
delta-BHC	g/m ³	< 0.0002	< 0.0002	-	-	-
gamma-BHC (Lindane)	g/m ³	< 0.0002	< 0.0002	-	-	-
cis-Chlordane	g/m ³	< 0.00010	< 0.00010	-	-	-
trans-Chlordane	g/m ³	< 0.00010	< 0.00010	-	-	-
2,4'-DDD	g/m³	< 0.0002	< 0.0002	-	-	-
4,4'-DDD	g/m³	< 0.0002	< 0.0002	-	-	-
2,4'-DDE	g/m³	< 0.0002	< 0.0002	-	-	-
4,4'-DDE	g/m³	< 0.0002	< 0.0002	-	-	-
2,4'-DDT	g/m³	< 0.0002	< 0.0002	-	-	-
4,4'-DDT	g/m³	< 0.0002	< 0.0002	-	-	-
Dieldrin	g/m³	< 0.00010	< 0.00010	-	-	-
Endosulfan I	g/m³	< 0.0002	< 0.0002	-	-	-
Endosulfan II	g/m³	< 0.0002	< 0.0002	-	-	-
Endosulfan sulphate	g/m³	< 0.0002	< 0.0002	-	-	-
Endrin	g/m³	< 0.00010	< 0.00010	-	-	-
Endrin aldehyde	g/m³	< 0.00010	< 0.00010	-	-	-
Endrin ketone	g/m³	< 0.0002	< 0.0002	-	-	-

CCREDITED

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Samp	le Name:	DH322	DUPA						
•	-		29-Jun-2022						
Lab	Number:	3023440.1	3023440.2						
Organochlorine Pesticides Screening in Water, By Liq/Liq									
Heptachlor	g/m³	< 0.00010	< 0.00010	-	-	-			
Heptachlor epoxide	g/m³	< 0.00010	< 0.00010	-	-	-			
Hexachlorobenzene	g/m³	< 0.0008	< 0.0008	-	-	-			
Methoxychlor	g/m³	< 0.00010	< 0.00010	-	-	-			
Total Petroleum Hydrocarbons in Wa	ater								
C7 - C9	g/m³	< 0.10	< 0.10	-	-	-			
C10 - C14	g/m³	< 0.2	< 0.2	-	-	-			
C15 - C36	g/m³	< 0.4	< 0.4	-	-	-			
Total hydrocarbons (C7 - C36)	g/m ³	< 0.7	< 0.7	-	-	-			

Analyst's Comments

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous							
Test	Method Description	Default Detection Limit	Sample No				
Individual Tests							
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-2				
рН	pH meter. APHA 4500-H ⁺ B 23 rd ed. 2017. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1-2				
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1-2				
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ - $N = NH_4^*-N + NH_3-N$). APHA 4500-NH ₃ H (modified) 23 rd ed. 2017.	0.010 g/m ³	1-2				
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA $4500\text{-}NO_3$ I (modified) 23^{rd} ed. 2017.	0.002 g/m ³	1-2				
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - NO2N. In-House.	0.0010 g/m ³	1-2				
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-2				
Dissolved Reactive Phosphorus	Filtered sample. Molybdenum blue colourimetry. Flow injection analyser. APHA 4500-P G (modified) 23 rd ed. 2017.	0.004 g/m ³	1-2				
Sulphate	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1-2				
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm Filtration, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.00005 - 0.0010 g/m ³	1-2				
Nutrient Profile		0.0010 - 0.010 g/m ³	1-2				
Organochlorine Pesticides Screening in Water, By Liq/Liq	Liquid / liquid extraction, GC-ECD analysis. In-house based on US EPA 8081.	0.00010 - 0.0008 g/m ³	1-2				
Total Petroleum Hydrocarbons in Water		1	•				
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	0.10 g/m ³	1-2				
C10 - C14	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	0.2 g/m ³	1-2				
C15 - C36	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	0.4 g/m ³	1-2				
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	0.7 g/m ³	1-2				

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 01-Jul-2022 and 05-Jul-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

Hill Laboratories	ANALYSIS REQUEST
Quote No 118522	R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand
Primary Contact Harry Jones 282198	T 0508 HILL LAB (44 555 22 Received by: Sanaya Hansotia T +64 7 856 2000 III III IIII IIII IIII IIII IIII IIII
Submitted By	E mail@hill-labs.co.nz
Client Name AECOM New Zealand Limited 71022	
Address PO Box 4241, Shortland Street	CHAIN OF CUSTOIN RECURD
Auckland 1140	Sent to Date & Time:
Phone 09 967 9200 Mobile	Hill Laboratories
Email	to be emelled back Signature:
Charge To AECOM New Zealand Limited 71022	
Client Reference 60644443-77:1 EBA	Received at <u>Date & Time:</u> Hill Laboratories
Order No 60644113 /1.1	
Results To Reports will be emailed to Primary Contact by default. Additional Reports will be sent as specified below.	Signature:
Email Primary Contact 🔲 Email Submitter 🗌 Email Client	Condition Temp:
Email Other Rate. Shesky @arcon.con	Room Temp Chilled Frozen
Other Detes of testing are not routinely included in the Certificates of Analysis.	Sample & Analysis details checked
Please inform the laboratory if you would like this information reported.	Signature:
Ix sample could not be collected. Please	Priority 🗌 Low 🗌 Normal 🗹 High
proceed with analysis.	Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory.
Queted Sample Types	Requested Reporting Date:

Quoted Sample Types

Ground Water (Gw)

No.	Sample Name	Sample Date/Time	Sample Type	Tests Require	<u>d</u> 1
1	DH322	29.6.22	GN,	as per	quote
2	ОН322 Очра	4	4	ų į	
3					
4			1		
5					
6				1	
7					
8					
9					
10					

Quote No Hill Laboratories TRIED, TESTED AND TRUSTED 118522	ANALYSIS RECUEST R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zeafand
Primary Contact Harry Jones 282198	T 0508 HILL LAB (44 555 22 Received by: Sanaya Hansotia T +64 7 856 2000
Submitted By	E mail@hill-labs.co.nz
Client Name AECOM New Zealand Limited 71022	W www.hill-laboratories.com
Address PO Box 4241, Shortland Street	BHAIN OF CUSTODY RECORD
Auckland 1140	Sent to Date & Time:
Phone 09 967 9200 Mobile	Hill Laboratories
Email	to be emelled back Signature:
Charge To AECOM New Zealand Limited 71022 Client Reference Content Reference Content Reference Order No Content No Content No Results To Reports will be emailed to Primary Contact by default.	
Email Other Acte. Shesky Paron con	Condition Temp: Room Temp Chilled Frozen
Other Dates of testing are not routinely included in the Certificates of Analysis. Please inform the laboratory if you would like this information reported. TOBLEFONAL INFORMATION / KNOWN HAZARDS	Sample & Analysis details checked Signature:
ix sample could not be collected. Please proceed with analysis.	Priority Low Normal View High Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory.
Quotod Sample Types	Requested Reporting Date:

Quoted Sample Types

Ground Water (GW)

and the second second second second second second second second second second second second second second second

No.	Sample Name	Sample Date/Time		
1	DH322	29.6.22	an,	as per, quote
2	DH322 Очра	4	↓ ↓	f
3				
4				
5		-		
6				
7				
8				
9				
10				

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand T 0508 HILL LAB (44 555 22)

Page 1 of 2

- **T** +64 7 858 2000
- E mail@hill-labs.co.nz
- W www.hill-laboratories.com

Job Information Summary

Client: AECOM New Zealand Limited				
Contact:	Harry Jones			
	C/- AECOM New Zealand Limited			
	PO Box 4241			
	Shortland Street			
	Auckland 1140			

Lab No:	3023440
Date Registered:	30-Jun-2022 8:53 am
Priority:	High
Quote No:	118522
Order No:	60644113/1.1
Client Reference:	EBA
Add. Client Ref:	
Submitted By:	Kate Shaskey
Charge To:	AECOM New Zealand Limited
Target Date:	07-Jul-2022 4:30 pm

Samples

Samp	Samples					
No	Sample Name	Sample Type	Containers	Tests Requested		
1	DH322 29-Jun-2022	Ground Water	UP1L, Org500, TPH250, FN100	Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn; pH; Nutrient Profile; Chloride; Sulphate; Organochlorine Pesticides Screening in Water, By Liq/Liq; Total Petroleum Hydrocarbons in Water		
2	DUPA 29-Jun-2022	Ground Water	UP1L, Org500, TPH250, FN100	Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn; pH; Nutrient Profile; Chloride; Sulphate; Organochlorine Pesticides Screening in Water, By Liq/Liq; Total Petroleum Hydrocarbons in Water		

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Test	Method Description	Default Detection Limit	Sample No
Individual Tests	· ·		-
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-2
рН	pH meter. APHA 4500-H ⁺ B 23 rd ed. 2017. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1-2
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1-2
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH₄-N = NH₄+-N + NH₃-N). APHA 4500-NH₃ H (modified) 23 rd ed. 2017.	0.010 g/m ³	1-2
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO $_{3^{\circ}}$ I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-2
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - NO2N. In-House.	0.0010 g/m ³	1-2
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ ⁻ I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-2
Dissolved Reactive Phosphorus	Filtered sample. Molybdenum blue colourimetry. Flow injection analyser. APHA 4500-P G (modified) 23 rd ed. 2017.	0.004 g/m ³	1-2
Sulphate	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1-2
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm Filtration, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.00005 - 0.0010 g/m ³	1-2
Nutrient Profile		0.0010 - 0.010 g/m ³	1-2
Organochlorine Pesticides Screening in Water, By Liq/Liq	Liquid / liquid extraction, GC-ECD analysis. In-house based on US EPA 8081.	0.00010 - 0.0008 g/m ³	1-2

Sample Type: Aqueous						
Test	Method Description	Default Detection Limit	Sample No			
Total Petroleum Hydrocarbons in Wa	ter					
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	0.10 g/m ³	1-2			
C10 - C14	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	0.2 g/m ³	1-2			
C15 - C36	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	0.4 g/m ³	1-2			
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	0.7 g/m ³	1-2			

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22)

Page 1 of 2

SPv1

- +64 7 858 2000 Т
- E mail@hill-labs.co.nz

W www.hill-laboratories.com

Certificate of Analysis

Client: AECOM New Zealand Limited				
Contact:	Harry Jones			
	C/- AECOM New Zealand Limited			
	PO Box 4241 Shortland Street			
	Shortland Street			
	Auckland 1140			

Lab No:	3023442
Date Received:	29-Jun-2022
Date Reported:	04-Jul-2022
Quote No:	81048
Order No:	60644113-1.1
Client Reference:	EBA - Bus Depot
Submitted By:	Kate Shaskey

Sample Type

Sample Type: Soil						
S	Sample Name:	EHA124_0.5	EHA124_2.1	EHA125_0.3	EHA125_0.9	EHA126_0.0-0.1
		29-Jun-2022 3023442.2	29-Jun-2022 3023442.4	29-Jun-2022 3023442.6	29-Jun-2022 3023442.7	29-Jun-2022 3023442.9
Individual Tests	Lab Number:	3023442.2	3023442.4	3023442.0	3023442.7	3023442.9
	(100		70	00		
Dry Matter	g/100g as rcvd	-	70	80	-	-
Heavy Metals, Screen Level				1	1	1
Total Recoverable Arsenic	mg/kg dry wt	7	< 2	< 2	< 2	< 2
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	45	17	16	14	15
Total Recoverable Copper	mg/kg dry wt	17	10	3	4	41
Total Recoverable Lead	mg/kg dry wt	21	12.3	8.2	6.4	9.2
Total Recoverable Nickel	mg/kg dry wt	37	21	6	6	14
Total Recoverable Zinc	mg/kg dry wt	30	39	18	15	23
Total Petroleum Hydrocarbons	in Soil					
C7 - C9	mg/kg dry wt	-	< 20	< 20	-	-
C10 - C14	mg/kg dry wt	-	< 20	< 20	-	-
C15 - C36	mg/kg dry wt	-	< 40	< 40	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	< 80	< 80	-	-
S	Sample Name:	EHA126_0.3 29-Jun-2022	EHA126_1.5 29-Jun-2022	EHA127_0.3 29-Jun-2022	EHA127_1.1 29-Jun-2022	EHA127_1.5 29-Jun-2022
	Lab Number:	3023442.10	3023442.12	3023442.14	3023442.15	3023442.16
Individual Tests						
Dry Matter	g/100g as rcvd	-	-	-	78	-
Heavy Metals, Screen Level	L			1		
Total Recoverable Arsenic	mg/kg dry wt	2	< 2	2	-	< 2
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	-	< 0.10
Total Recoverable Chromium	mg/kg dry wt	11	10	15	-	12
Total Recoverable Copper	mg/kg dry wt	7	3	10	-	4
Total Recoverable Lead	mg/kg dry wt	12.8	5.2	12.3	-	5.3
Total Recoverable Nickel	mg/kg dry wt	10	4	17	-	5
Total Recoverable Zinc	mg/kg dry wt	29	11	26	-	15
Total Petroleum Hydrocarbons			1	1	1	1
C7 - C9	mg/kg dry wt	-	-	-	< 20	-
010 011	mg/kg dry wt	-	-	-	< 20	-
C10 - C14			_	-	< 40	-
C10 - C14 C15 - C36	mg/kg dry wt	-				

Appendix No.1 - Chain of Custody

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Summary of Methods

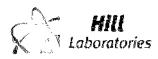
The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Individual Tests	·					
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	2, 4, 6-7, 9-10, 12, 14, 16			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	4, 6, 15			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	2, 4, 6-7, 9-10, 12, 14, 16			
Total Petroleum Hydrocarbons in Soil			1			
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	20 mg/kg dry wt	4, 6, 15			
C10 - C14	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	20 mg/kg dry wt	4, 6, 15			
C15 - C36	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	40 mg/kg dry wt	4, 6, 15			
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	70 mg/kg dry wt	4, 6, 15			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 01-Jul-2022 and 04-Jul-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.


This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

.

K	Hill Labor TRIED, TESTED A				Date Recy: 29-Jun-22 17:0	
Quo	te No		R J Hill Laboratories Limit Ground Roor, 28 Heather	eo	2 3442)
Prim	ary Contact Hamy Ja	~es	Pamell Auckland 1052, New Zeal	and JU	2 3442	
Sub	mitted By Namy Ju-	<u> </u>	T 0508 HILL LAB (44 5	55 22) Receive	d by: Sanaya Hansotia	
Clier	nt Name AEcom		T +64 7 858 2000 E mail@hiiHabs.co.nz			
Addre	ss 8 Mahuhu Gre	<u></u>	W www.hill-laboratories.	com 3130234	1001 1001 10 111 111 426	
	KLCBP PO	stcode		19 A STALL		
Phon	e Mobile O	21348799	Sent to			<u></u>
Emai	Hamy. Jones@cecc	حن، حر	Hill Laboratories	Date & Time:		
Cha	rge To <u>AElom</u>		Tick if you require COC	Name:		-
Clien	Reference EBA - Bus D-	epst	to be emailed back	Signature:		
Orde	NO 60644117- 1.1				the energy with the energy of the	1
Res	Reports will be emailed to Prima Additional Reports will be sent as		Samples will be processe testing capability and cap samples to be retained a	pacity. Please inform	ries site with the appropriate the Laboratory if you wish site of receipt.	
	mail Primary Contact 🛛 Email Submi		Received at			
⊡€	mail Other <u>5 katk. shaske</u>	y Qaecon. con	Hill Laboratories	Name:	<u>aan ah ah ah ah ah ah ah ah ah ah ah ah ah </u>	-
	ther			Signature:		
	ADDITUNALINEDI	MIN	Priority 🗆 Lo	w 🗆 Nor	mal 🗆 High	
<u></u>			🗆 Urgent (ASAP	extra charge appli	es, please contact lab first))
			Requested Reporting I	Dete:		
					the affectation Here	
İ			Please ensure a	all asbestos san	ples are <u>individually</u>	
			Please ensure a double bagged	all asbestos san upon submissiv	ples are <u>individually</u> on to the laboratory.	
		Sample	<u>double bagged</u> Sample	upon submissi Sample	on to the laboratory.	
No.	Sample Name	Material	double bagged	upon submissñ Sample Date	Tests Required (if not as per Quote)	
No.	Sample Name EHA 124_0.0-0.15	-	<u>double bagged</u> Sample	upon submissi Sample	on to the laboratory.	
1		Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1	EHA 124_0.0-0.15 EHA 124_0.5	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4	EHA 124_0.0-0.15 EHA 124_0.5	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4 5	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4 5 6	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4 5 6 7	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4 5 6 7 8	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2. EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.3 EHA 126_0.3 EHA 126_1.5	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2. EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.3 EHA 126_0.3 EHA 126_1.5 EHA 126_1.5 EHA 127_0.0-0.15	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	1 of 2
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2. EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.3 EHA 126_0.3 EHA 126_1.5	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	t of 2
1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} \hline E HA 124_0.0-0.15 \\ \hline E HA 124_0.5 \\ \hline E HA 124_1.1 \\ \hline E HA 124_1.1 \\ \hline E HA 124_1.1 \\ \hline E HA 125_0.0-0.15 \\ \hline E HA 125_0.3 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 125_0.7 \\ \hline E HA 126_0.3 \\ \hline E HA 126_0.3 \\ \hline E HA 126_0.5 \\ \hline E HA 127_0.0-0.15 \\ \hline \hline HA 127_0.0-0.15 \\ \hline \hline HA 127_0.0-0.15 \\ \hline \hline HA 127_0.0-0.15 \\ \hline \hline HA 127_0.0-0.15 \\ \hline \hline HA 127_0.0-0.15 \\ \hline \hline HA 127_0.0-0.15 \\ \hline \hline HA 127_0.0-0.15 \\ \hline \hline \hline HA 127_0.0-0.15 \\ \hline \hline \hline HA 127_0.0-0.15 \\ \hline \hline \hline \hline HA 127_0.0-0.15 \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	Material	<u>double bagged</u> Sample	upon submissñ Sample Date	Tests Required (if not as per Quote)	1 of 2

. .

Carla Johnstone <carla.johnstone@hill-labs.co.nz>

RE: [EXTERNAL] Hill Laboratories Job Request Form and Summary Page for Job Number 3023442; Ref: EBA - Bus Depot

1 message

Jones, Harry <Harry.Jones@aecom.com>

30 June 2022 at 11:50

To: "env.csm@hill-labs.co.nz" <env.csm@hill-labs.co.nz>, Carla Johnstone <carla.johnstone@hill-labs.co.nz> Cc: "Shaskey, Kate" <Kate.Shaskey@aecom.com>, "Hoiroyd, Shannon" <Shannon.Hoiroyd@aecom.com>

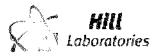
Hi there,

Could we please schedule the following analysis (highlighted box with X) for the attached above CoCs

	Heavy Metals	Asbestos semi-qua	int TPH
EHA124_0.0-0.15		Hold Cold	
EHA124_0.5	Х		
EHA124_1.1		Hold Cold	
EHA124_2.1	X		X
EHA125_0.0-0.16		X	
EHA125_0.3	х		Х
EHIA125_0.9	X		
EHA125_1.5		Hold Cold	-
EHA126_0.0.0.16	Х		
EHIA126_0.3	X		
EHA126_1.1		Haid Cold	
EHA126_1.5	X		
EHA127_0.0-0.15		X	
EHA127_0.3	X		
EHA127_1.1			Х
EHA127_1.5	X		

Kind Regards

Harry Jones


Environmental Scientist D +64 21 348 799 harry.jones@aecom.com

AECOM

AECOM House 8 Mahuhu Crescent Auckland, New Zealand T +64 9 967 9200 aecom.com

Delivering a better world

a.	Hill Labor				EQUEST
.	TRIED, TESTED AN		R J Hill Laboratories Lin	nited Jab No:	Date Recv: 29-Jun-
	e No		Ground Floor, 28 Heath Pamell	er Street 30	2 3 4 4
		~~	Auckland 1052, New Ze		
	nitted By Namy jue	<u>ç</u>	T 0508 HILL LAB (44 T +64 7 858 2000	\$ 555 22) Receive	d by: Sanaya Hans Milimit III Mi
Clien	tName Atton		E mail@hiiHabs.co.n W www.hilHaboratorie		
م م		······································			1426
	<u> </u>	tcode 21 348 799		DEFEN	
Phone Email	Hamy Torese aco		Sent to Hill Laboratories	Date & Time:	
	ge To AELOM			Name:	
	Reference EBA - Bus De	pot	Tick if you require CC to be emailed back		
Order	Columna 11	/		Signature:	••••••••••••••••••••••••••••••••••••••
	Lits To Reports will be emailed to Primary Additional Reports will be sent as	y Contact by default.	Samples will be proces testing capability and c	apacity. Please inform	n the Laboratory if you
	/		samples to be retained	i and analysed et the	site of receipt.
	nail Other 5 kok. shaskey		Received at Hill Laboratories	Date & Time: Name:	
			-1 10.43 10.75		
			Priority 🗆 l	Signature:	rmal 🗆 Hig
			Requested Reportin Please ensur <u>double bagg</u>	e all asbestos san	nples are <u>individua</u> on to the laborator
No		Sample Material	Please ensur	e all asbestos san	on to the laborator
No.		Material	Please ensur <u>double bagg</u> Sample	e all asbestos san ed upon submissi Sample	Tests Required
1	EHA 124-0.0-0.15		Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2	EHA 124_0.0-0.15 EXA 124_0.5	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3	EHA 124_0.0-0.15 EXA 124_0.5	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_1.4 EHA 125_0.0-0.15	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_1.4 EHA 125_0.0-0.15 EHA 125_0.3	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6 7	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6 7 8	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	on to the laborator
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 126_0.3 EHA 126_0.3 EHA 126_1.1	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.3 EHA 126_0.3 EHA 126_1.5	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.5 EHA 126_0.3 EHA 126_1.5 EHA 126_1.5 EHA 127_0.0-0.15 Version: 6	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6 7 8 9 10	$EHA 124_0.0-0.05$ $EHA 124_0.5$ $EHA 124_0.5$ $EHA 124_1.1$ $EHA 124_2.4$ $EHA 125_0.0-0.15$ $EHA 125_0.3$ $EHA 125_0.7$ $EHA 126_0.3$ $EHA 126_0.3$ $EHA 127_0.0-0.15$ $EHA 127_0.3$	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.5 EHA 126_0.3 EHA 126_1.5 EHA 126_1.5 EHA 127_0.0-0.15 Version: 6	Material	Please ensur <u>double bagg</u> Sample	e ali asbestos san ed upon submissi Sample Date	Tests Required (if not as per Qu

Carla Johnstone <carla.johnstone@hill-labs.co.nz>

RE: [EXTERNAL] Hill Laboratories Job Request Form and Summary Page for Job Number 3023442; Ref: EBA - Bus Depot

1 message

Jones, Harry <Harry.Jones@aecom.com>

30 June 2022 at 11:50

To: "env.csm@hill-labs.co.nz" <env.csm@hill-labs.co.nz>, Carla Johnstone <carla.johnstone@hill-labs.co.nz> Cc: "Shaskey, Kate" <Kate.Shaskey@aecom.com>, "Hoiroyd, Shannon" <Shannon.Hoiroyd@aecom.com>

Hi there,

Could we please schedule the following analysis (highlighted box with X) for the attached above CoCs

	Heavy Metals	Asbestos semi-qua	nt TPH
EHIA124_0.0-0.15	· • • • • • • • • • • • • • • • • • • •	Hold Cold	
EHA124_0.5	χ		
EHA124_1.1		Hold Cold	
EHA124_2.1	Х		X
EHA125_0.0.0.15		X	
EHIA125_0.3	X		Х
EHA125_0.9	Х		
EHA125_1.5		Hold Cold	
EHIA126_0.0.0.15	Х		
EHA126_0.3	X		
EHA126_1.1		Hold Cold	
EHA126 1.5	Х		
EHA127_0.0-0.15		X	
EHA127_0.3	X		
EHA127_1.1			Х
EHA127_1.5	X		

Kind Regards

Harry Jones

Environmental Scientist D +64 21 348 799 harry.jones@aecom.com

AECOM

AECOM House 8 Mahuhu Crescent Auckland, New Zealand T +64 9 967 9200 aecom.com

Delivering a better world

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand T 0508 HILL LAB (44 555 22)

- **T** +64 7 858 2000
- E mail@hill-labs.co.nz
- W www.hill-laboratories.com

Page 1 of 2

Job Information Summary

Client:	AECOM New Zealand Limited
Contact:	Harry Jones
	C/- AECOM New Zealand Limited
	PO Box 4241
	Shortland Street
	Auckland 1140

Date Registered:30-Jun-2022 8:58 amPriority:High
Priority: High
Quote No: 81048
Order No: 60644113-1.1
Client Reference: EBA - Bus Depot
Add. Client Ref:
Submitted By: Kate Shaskey
Charge To: AECOM New Zealand Limited
Target Date: 04-Jul-2022 4:30 pm

Samples

Sam	Samples						
No	Sample Name	Sample Type	Containers	Tests Requested			
1	EHA124_0.0-0.15 29-Jun-2022	Soil	GSoil300	Hold Cold			
2	EHA124_0.5 29-Jun-2022	Soil	GSoil300	Heavy Metals, Screen Level			
3	EHA124_1.1 29-Jun-2022	Soil	GSoil300	Hold Cold			
4	EHA124_2.1 29-Jun-2022	Soil	GSoil300	Heavy Metals, Screen Level; Total Petroleum Hydrocarbons in Soil			
5	EHA125_0.0-0.15 29-Jun-2022	Soil	GSoil300	Hold Cold			
6	EHA125_0.3 29-Jun-2022	Soil	GSoil300	Heavy Metals, Screen Level; Total Petroleum Hydrocarbons in Soil			
7	EHA125_0.9 29-Jun-2022	Soil	GSoil300	Heavy Metals, Screen Level			
8	EHA125_1.5 29-Jun-2022	Soil	GSoil300	Hold Cold			
9	EHA126_0.0-0.15 29-Jun-2022	Soil	GSoil300	Heavy Metals, Screen Level			
10	EHA126_0.3 29-Jun-2022	Soil	GSoil300	Heavy Metals, Screen Level			
11	EHA126_1.1 29-Jun-2022	Soil	GSoil300	Hold Cold			
12	EHA126_1.5 29-Jun-2022	Soil	GSoil300	Heavy Metals, Screen Level			
13	EHA127_0.0-0.15 29-Jun-2022	Soil	cGSoil	Hold Cold			
14	EHA127_0.3 29-Jun-2022	Soil	GSoil300	Heavy Metals, Screen Level			
15	EHA127_1.1 29-Jun-2022	Soil	cGSoil	Total Petroleum Hydrocarbons in Soil			
16	EHA127_1.5 29-Jun-2022	Soil	cGSoil	Heavy Metals, Screen Level			

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Individual Tests						
Environmental Solids Sample Drying	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	2, 4, 6-7, 9-10, 12, 14, 16			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	4, 6, 15			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	2, 4, 6-7, 9-10, 12, 14, 16			
Total Petroleum Hydrocarbons in Soil						
Client Chromatogram for TPH by FID	Small peaks associated with QC compounds may be visible in chromatograms with low TPH concentrations. QC peaks are as follows: one peak in the C12 - 14 band, the C21 - 25 band and the C30 - 36 band. All QC peaks are corrected for in the reported TPH concentrations.	-	4, 6, 15			

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	20 mg/kg dry wt	4, 6, 15			
C10 - C14	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	20 mg/kg dry wt	4, 6, 15			
C15 - C36	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	40 mg/kg dry wt	4, 6, 15			
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	70 mg/kg dry wt	4, 6, 15			

T 0508 HILL LAB (44 555 22)

Page 1 of 3

Certificate of Analysis

Client:	AECOM New Zealand Limited	Lab No:	3023452	A2Pv1
Contact:	Harry Jones	Date Received:	29-Jun-2022	
	C/- AECOM New Zealand Limited	Date Reported:	04-Jul-2022	
	PO Box 4241	Quote No:	81048	
	Shortland Street	Order No:	60644113-1.1	
	Auckland 1140	Client Reference:	EBA - Bus Depot	
		Add. Client Ref:	Sampled: 29/6/22	
		Submitted By:	Harry Jones	

Sample Type: Soi

Sample Type: Soli						
Sample	Name:	EHA125_0.0-0.15	EHA127_0.0-0.15			
Lab N	umber:	3023452.3	3023452.7			
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	-	-	-
Description of Asbestos Form		-	-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	-	-	-
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	-	-	-
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	-	-	-
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	-	-	-
As Received Weight	g	855.0	1,057.6	-	-	-
Dry Weight	g	640.3	776.7	-	-	-
Moisture	%	25	27	-	-	-
Sample Fraction >10mm	g dry wt	< 0.1	173.2	-	-	-
Sample Fraction <10mm to >2mm	g dry wt	48.6	274.1	-	-	-
Sample Fraction <2mm	g dry wt	590.1	327.0	-	-	-
<2mm Subsample Weight	g dry wt	55.3	59.9	-	-	-
Weight of Asbestos in ACM (Non- Friable)	g dry wt	< 0.00001	< 0.00001	-	-	-
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	-	-	-
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	-	-	-

Glossary of Terms

• Loose fibres (Minor) - One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.

• Loose fibres (Major) - Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.

• ACM Debris (Minor) - One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.

• ACM Debris (Major) - Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.

• Unknown Mineral Fibres - Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required. • Trace - Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction

2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil Test	Method Description	Default Detection Limit	Sample N
Individual Tests		Delaut Detection Limit	
Weight of Asbestos as Asbestos Fines in <10mm >2mm Fraction*	Measurement on analytical balance, from the <10mm >2mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.00001 g dry wt	3, 7
New Zealand Guidelines Semi Quantitativ	ve Asbestos in Soil	1	
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	3, 7
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	3, 7
Moisture	Sample dried at 100 to 105° C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	3, 7
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	3, 7
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	3, 7
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	3, 7
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	3, 7
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	3, 7
Weight of Asbestos in ACM (Non- Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	3, 7
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	3, 7
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	3, 7
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	3, 7
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	3, 7
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	3, 7
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	3, 7

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

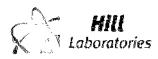
Testing was completed on 04-Jul-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

John Keneth Paglingayen BApSc Laboratory Technician - Asbestos

.


.

٠.

e.

۰.

	Hill Labo TRIED, TESTED A		<u> KUNU</u>	r F	
Que	te No		R J Hill Laboratories L Ground Floor, 28 Heat		Date Recv; 29-Jun-22 17:08
Prin	nary Contact Hamy Ja	àres	Pameli Auckland 1052, New Z	ealand 50	2 3452
Sub	mitted By Namy Ju-	ح٢	T 0508 HILL LAB (4	4 555 22) Receiv	ed by: Sanaya Hansotia
Clie	nt Name AEcon		T +64 7 858 2000 E mail@hill-labs.co.r		
Addr		-es	W www.hill-laboratori		1
	- -	ostcode		UL HISTO	1///://:///////////////////////////////
Phor	e Mobile C	521 348 799	Sent to		
Ema	1 Harry Jones Daer	<u>0~.co~</u>	Hill Laboratories	Date & Time:	
Cha	rge To Atlom	a 2 .	Tick if you require CO	Name;	
Clier	1 Reference EBA - Bus D	epot	└── to be emailed back	Signature:	
Orde			Samples will be proces		tories site with the appropriate
	ults To Reports will be emailed to Prim. Additional Reports will be sent a	as specified below.		apacity. Please info	m the Laboratory if you wish
	mail Primary Contact 🛛 Email Subm		Received at	Date & Time:	
٦£	mail Other <u>& Rack. Shaske</u>	y paccom, com	Hill Laboratories	Name:	
0 [] 1000	ther			Signature;	
			Priority 🗆 I	.ow 🗆 No	rmal 🗆 High
			🗆 Urgent (Asa	P extra charge app	lles, please contact lab first)
			Requested Reporting	g Date:	
			Please ensure double bagge	ell asbestos san <u>d</u> upon submissi	nples are <u>individually</u> on to the laboratory.
No.	Sample Name	, Sample Material	Please ensure double bagge Sample Location	e all asbestos san d upon submissi Sample Date	nples are <u>individually</u> on to the laboratory. Tests Required (if not as per Quote)
No. 1	Sample Name EHA 124_0.0-0.(5	•	double bagge Sample	<u>d</u> upon submissi Sample	on to the laboratory. Tests Required
1		Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1	EHA 124_0.0-0.15 EHA 124_0.5	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_1.1	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_2.1 EHA 124_2.1 EHA 125-0.0-0.15	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_2.1 EHA 124_2.1 EHA 125-0.0-0.15	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3 EHA 125_0.3 EHA 125_0.3	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_2.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_2.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.0-0.15 EHA 126_0.3	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 126_0.0-0.15 EHA 126_0.3 EHA 126_1.1	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 126_0.0-0.15 EHA 126_0.3 EHA 126_1.5	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10 КВ IIts	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.3 EHA 126_0.0-0.15 EHA 126_1.5 EHA 126_1.5 EHA 126_1.5 EHA 127_0.0-0.15 Version: 6	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10 КВ Itte	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 126_0.0-0.15 EHA 126_0.3 EHA 126_1.5	Material	double bagge Sample	<u>d</u> upon submissi Sample Date	Tests Required (if not as per Quote) Kola (ala)

Carla Johnstone <carla.johnstone@hill-labs.co.nz>

RE: [EXTERNAL] Hill Laboratories Job Request Form and Summary Page for Job Number 3023442; Ref: EBA - Bus Depot

1 message

Jones, Harry <Harry.Jones@aecom.com>

30 June 2022 at 11:50

To: "env.csm@hill-labs.co.nz" <env.csm@hill-labs.co.nz>, Carla Johnstone <carla.johnstone@hill-labs.co.nz> Cc: "Shaskey, Kate" <Kate.Shaskey@aecom.com>, "Hoiroyd, Shannon" <Shannon.Hoiroyd@aecom.com>

Hi there,

Could we please schedule the following analysis (highlighted box with X) for the attached above CoCs

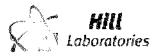
	Heavy Metals	Asbestos semi-qua	int TPH
EHA124_0.0-0.15		Hold Cold	
EHA124_0.5	Х		
EHA124_1.1		Hold Cold	
EHA124_2.1	X		X
EHA125_0.0-0.16		X	
EHA125_0.3	х		Х
EHIA125_0.9	X		
EHA125_1.5		Hold Cold	
EHA126_0.0.0.16	Х		
EHIA126_0.3	X		
EHA126_1.1		Haid Cold	
EHA126_1.5	X		
EHA127_0.0-0.15		X	
EHA127_0.3	X		
EHA127_1.1			Х
EHA127_1.5	X		

Kind Regards

Harry Jones

Environmental Scientist D +64 21 348 799 harry.jones@aecom.com

AECOM


AECOM House 8 Mahuhu Crescent Auckland, New Zealand T +64 9 967 9200 aecom.com

Delivering a better world

	Hill Labo TRIED, TESTED A				
Que	te No		R J Hill Laboratories Lir Ground Floor, 28 Heath		Date Reov; 29-Jun-22 17:08
Prin	nary Contact Hamy Ja	àres	Pameli Auckland 1052, New Ze	ealand JU	2 3452
Sub	mitted By Namy Ju-	25	T 0508 HILL LAB (44	555 22) _Receiv	ed by: Sanaya Hansotia
Clie	nt Name A Elon		T +64 7 858 2000 E mail@hill-labs.co.rg		
Addr		~es	W www.hill-laboratorie	s.com 11111	1
		ostcode			
Phor	e Mobile C	12/348799	Sent to		
Ema	1 Harry, Jorespoer	<u>~~~.c~</u>	Hill Laboratories	Date & Time:	
Cha	irge to <u>xitlom</u>	á .	Tick if you require CO	Name: c	
Clier	il Reference EBA - Bus V	repot	to be emailed back	Cianatura-	
Orde	rNo 60644113-1.1	·	0	Signature:	
	Sults To Reports will be emailed to Prima Additional Reports will be sent a	as specified below.	Samples will be process testing capability and ca samples to be retained	apacity. Please infor	tories site with the appropriate in the Laboratory if you wish e site of receipt.
	mail Primary Contact 🛛 Email Subm		Received at	Date & Time;	
٦É	mail Other <u>5 Rick</u> . Shaske	y Pacism. wh	Hill Laboratories	Name:	
	ther			Signature:	
			Priority 🗆 L	ow 🗆 No	rmal 🗆 High
0,7910133			-		lles, please contact lab first)
			Requested Reporting		,
			1 1 1 1 1 1		·····
					nples are <u>individually</u> on to the laboratory
j		2. ·			nples are <u>individually</u> on to the laboratory.
No.	Sample Name	Sample Material			on to the laboratory. Tests Required
No.		Material	<u>double bagged</u> Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1	EHA 124_0.0-0.15		<u>double bagged</u> Sample	<u>i</u> upon submissi Sample	on to the laboratory. Tests Required
1 2	EHA 124_0.0-0.15 ENA 124_0.5	Material	<u>double bagged</u> Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.1	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5	EHA 124_0.0-0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.4 EHA 125-0.0-0.15	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 124_2.1	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3 EHA 125_0.3 EHA 125_0.3	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 126_0.0-0.15 EHA 126_0.3 EHA 126_1.1	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_2. EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 126_0.3 EHA 126_1.1 EHA 126_1.5	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.5 EHA 126_1.5 EHA 126_1.5 EHA 126_1.5 EHA 127_0.0-0.15	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10 Кө ІІІы	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_1.1 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 126_0.0-0.15 EHA 126_0.3 EHA 126_1.1	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	on to the laboratory. Tests Required (if not as per Quote)
1 2 3 4 5 6 7 8 9 10 КВ Its	EHA 124_0.0-0.15 EHA 124_0.5 EHA 124_0.5 EHA 124_1.1 EHA 124_2.4 EHA 125_0.0-0.15 EHA 125_0.3 EHA 125_0.7 EHA 125_0.7 EHA 125_0.7 EHA 125_0.5 EHA 126_1.5 EHA 126_1.5 EHA 126_1.5 EHA 126_1.5 EHA 126_1.5 EHA 126_1.5	Material	double bagged Sample	<u>f</u> upon submissi Sample Date	Tests Required (if not as per Quote) <i>Hold</i> (and

. .

•

Carla Johnstone <carla.johnstone@hill-labs.co.nz>

RE: [EXTERNAL] Hill Laboratories Job Request Form and Summary Page for Job Number 3023442; Ref: EBA - Bus Depot

1 message

Jones, Harry <Harry.Jones@aecom.com>

30 June 2022 at 11:50

To: "env.csm@hill-labs.co.nz" <env.csm@hill-labs.co.nz>, Carla Johnstone <carla.johnstone@hill-labs.co.nz> Cc: "Shaskey, Kate" <Kate.Shaskey@aecom.com>, "Hoiroyd, Shannon" <Shannon.Hoiroyd@aecom.com>

Hi there,

Could we please schedule the following analysis (highlighted box with X) for the attached above CoCs

	Heavy Metals	Asbestos semi-qua	nt TPH
EHA124_0.0-0.15		Hold Cold	
EHA124_0.5	Х		
EHA124_1.1		Hold Cold	
EHA124_2.1	Х		X
EHA125_0.0.0.15		X	
EHA125_0.3	X		X
EHA125_0.9	Х		
EHA125_1.5		Hold Cold	
EHA126_0.0-0.16	Х		
EHA126_0.3	X		
EHA126_1.1		Hald Cold	
EHA126 1.5	X		
EHA127_0.0-0.15		X	
EHA127_0.3	X		
EHA127_1.1			X
EHA127-15	X		

Kind Regards

Harry Jones

Environmental Scientist D +64 21 348 799 harry.jones@aecom.com

AECOM

AECOM House 8 Mahuhu Crescent Auckland, New Zealand T +64 9 967 9200 aecom.com

Delivering a better world

- T 0508 HILL LAB (44 555 22)
- +64 7 858 2000 Т
- E mail@hill-labs.co.nz
- W www.hill-laboratories.com

Page 1 of 2

Job Information Summary

Client:	AECOM New Zealand Limited
Contact:	Harry Jones
	C/- AECOM New Zealand Limited
	PO Box 4241
	Shortland Street
	Auckland 1140

Lab No:	3023452
Date Registered:	30-Jun-2022 7:54 am
Priority:	High
Quote No:	81048
Order No:	60644113-1.1
Client Reference:	EBA - Bus Depot
Add. Client Ref:	Sampled: 29/6/22
Submitted By:	Harry Jones
Charge To:	AECOM New Zealand Limited
Target Date*:	05-Jul-2022 4:30 pm

* As the samples require analysis at a Hill Laboratories location that is different to where they were received, the Target Date for reporting has been extended.

Samples				
No	Sample Name	Sample Type	Containers	Tests Requested
1	EHA124_0.0-0.15	Soil	PSoil500Asb	Hold
2	EHA124_0.5	Soil	cPSoil500Asb	Hold
3	EHA125_0.0-0.15	Soil	PSoil500Asb	New Zealand Guidelines Semi Quantitative Asbestos in Soil
4	EHA125_0.3	Soil	PSoil500Asb	Hold
5	EHA126_0.0-0.15	Soil	cPSoil500Asb	Hold
6	EHA126_0.3	Soil	PSoil500Asb	Hold
7	EHA127_0.0-0.15	Soil	PSoil500Asb	New Zealand Guidelines Semi Quantitative Asbestos in Soil
8	EHA127_0.3	Soil	PSoil500Asb	Hold

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil				
Test	Method Description	Default Detection Limit	Sample No	
Individual Tests		1		
Weight of Asbestos as Asbestos Fines in <10mm >2mm Fraction	Measurement on analytical balance, from the <10mm >2mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.00001 g dry wt	3, 7	
New Zealand Guidelines Semi Quantita	tive Asbestos in Soil		1	
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	3, 7	
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	3, 7	
Moisture	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	3, 7	
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	3, 7	
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	3, 7	
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	3, 7	
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	3, 7	
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	3, 7	

Sample Type: Soil				
Test	Method Description	Default Detection Limit	Sample No	
Weight of Asbestos in ACM (Non- Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	3, 7	
Asbestos in ACM as % of Total Sample	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	3, 7	
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	3, 7	
Asbestos as Fibrous Asbestos as % of Total Sample	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	3, 7	
Weight of Asbestos as Asbestos Fines (Friable)	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	3, 7	
Asbestos as Asbestos Fines as % of Total Sample	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	3, 7	
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	3, 7	